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1. Introduction

We consider a function/(z) regular in an angle

(1.1) S = S(ot,j8) = {21 a ^ argz ^ ft | z | > 0},

and suppose that for some positive A,/(zA) is regularf at z = 0. In the sequel we always
include this second condition, when we say tha t / i s regular in S. We write

(1.2) S' = S(a'J'), where a < a' < ft < ft

Let n(r, a, S) be the number of a-points, i.e. roots of the equation /(z) = a in the
sector

(1.3) S(r) = {z\ z e S a n d \z\<r}.

Our hypotheses ensure that n{r, a, S) is finite. We also write

(1.4) M(r,S)= sup \f(reie)\.

The order k of/ in S is defined by

(1.5)
logr

The order of the a-points of / is defined by

(1.6)
log r

The following result is classical and due to Nevanlinna [3].

THEOREM A. If for some S' we have

(1.7) k(S') > n/(fi-a),

then we have for every a with at most one exception

(1.8) k(a,S)^k(S').

It is essential that strict inequality holds in the hypothesis (1.7). Thus if/(z) = zez, S
is the angle | argz| ^ %n, and S' an angle | argz| ^ S, for 0 < S < jn, then k(S') = 1,
but

(1.9) /(z) ^ o o , as z -* oo in S,

t This condition ensures that roots of/(z) = a cannot accumulate at the origin, so that n(r, a, S) is always
finite.
Proc. London Math. Soc. (3), 44 (1982), 193-214.
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194 W. K. HAYMAN AND YANG LO

so that the equation/(z) = a has at most a finite number of roots in S for every a, and
so k(a, S) = 0 for every a.

M. L. Cartwright in looking through Littlewood's papers in the library of Trinity
College, Cambridge recently discovered that Littlewood had in about 1930 been
concerned with the question of finding some extension of Theorem A to the case when
(1.7) is false. Clearly additional conditions will be needed to prevent (1.9). If merely
fi — a > 0 Littlewood put forward the following

CONJECTURE. If for some positive p we have

(1.10) k{S')^p and k{0,S')^p,

then k(a,S) ^ p for every a with at most one exception or at least for most values.

2. Statement of results

It turns out that the hypotheses in the conjecture are still too weak. To achieve the
desired conclusion it seems to be necessary to prove that n{r,0,S') and M(r,S') are
large for the same value of r, or that/(z) has many zeros near some point in S where
the function is large. This is not a consequence of (1.10). We can achieve our aim by
assuming tha t /has lower order at least p in S' or at least that M(r,S') is large for a
fairly dense sequence of r. More precisely, we have

THEOREM 1. Suppose that rv is an increasing sequence of positive numbers such that

(2.1)

and

(2.2)

Suppose further

(2.3)

Thenifk(O,S'):

that

Z p, we

rv -> oo

logrv + 1 — • 1 , M S V -

logr.

log log M(r,,S')

v - oo l o g rv

/iaue k(a, S)^ p for every a

-*• 0 0 .

^ p > 0 .

wit/i at most one exception.

The exceptional value of a is essential in Theorem A and Theorem 1. Thus
f(z) = 1 +e: satisfies the conditions of both Theorems with p = 1, if /? — a > n, but
f{z) # 1, so that k(\,S) = 0. Also the condition (2.2) is essential for the proof of
Theorem 1. We prove

THEOREM 2. Suppose that we are given d, n, p such that 0 < d < jn,

(2.4) 1 < r, < 2,

(2.5) f < p < 1,

and a sequence rv tending to oo with v. There exists an entire function f(z) of order 1,
mean type, such that if S = S(-jn+%d,?n-%5), and S' = S(-%n + d,jn-d), then
f{z) has order p in S and

(2.6)
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 195

as z -* co in S outside the sequence of annuli

(2.7) rv<\z\<rv", for v = 1,2,....

Further, k(0,S') = p, but for a # 0,

(2.8) mw^pJl

We note that 5,1 -p, n-1 can be chosen as small as we please so that the openings
of 5,5' differ arbitrarily little from nip. Further, (2.6) shows that/(z) is of lower order at
least p in S outside the sequence of annuli (2.7), only just bigger than those permitted
by (2.2). In particular, Theorem 1 fails if rv is any increasing sequence not satisfying
(2.2), for in this case there is a subsequence v = vn of n for which rv + 1 > rv

n, where
n > 1, and we can apply Theorem 2 with rVn instead of rv. Also by considering/(zV°)
instead off(z) we can obtain corresponding results in any angle S(ct, /?) (though our
example will then no longer be entire in general).

3. Proof of Theorem 1: preliminary results

In order to prove Theorem 1, we need an improved form of Schottky's theorem
[2, p. 129].

LEMMA 1. Suppose that F(z)is meromorphic in \z\ < 1 and that the equations
F(z) = 0, oo, 1 have there at most a finite number of roots ax where X = 1 to L, b^ where
p. = 1 to M, and cv where v = 1 to N, respectively. We write

-b.

Then ifz{= reie, where 0 < r < 1 , 0 ^ 0 ^ 2 7 1 , and z0 = 0, we have

(3.2) l og + |F 0 (2 1 ) | ^ ^ +

where Ao is a positive absolute constant.

We deduce

L E M M A 2. The conclusion (3.2) holds for an arbitrary pair of points zQ,zi in \z\ < 1,
with

r= h~Z°

To prove Lemma 2 we simply apply Lemma 1 with

Ft
.i+W

instead of
F(z), F0(z), zx.

From now on we assume that F(z) satisfies the hypotheses of Lemma 1 and is regular
so that M = 0.
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196 W. K. HAYMAN AND YANG LO

LEMMA 3. Suppose that 0 < t < 1 and that C > 1. Then if Ao is as in (3.2) and

(3.3) l o g | F ( 0 ) | > y - ^ { l o g C + L + iV + l}, where A 1 = 22A0,

there exists r, such that t < r < j[l + t) and

(3.4) \F(reie)\>C,

Hence for \ a \ < C, the equations F(z) = a all have the same number of roots in \ z \ < r,
that is, at most L. Also, ifS>0,

(3.5) log|F(z)| > logC-Llog(4e/<5), for\z\<r,

outside a set of circles the sum of whose radii is at most 5.

We apply Lemma 2 with zi = 0 and z 0 = reie. This gives

(3.6) log+ |F0(z0) | ^ —-—log+ IFofci)! — L — N — 1.

Next we have

log | F(z0) | = log | F0(z0) | + £ log

(3.7) log | F0(z0) | + £ log

Also for 0 < a < 1 and 0 < rx < 1, we have

(3.8)

To see this we note that

1

log
\-ar

r — a
dr<5{\-rl).

l-r
log

1 Jr

l-ar

r — a
dr < 2 \ log

l-ar

r — a

dr

< 2 log

l-r'

dr

r — a l-r2

.*£,.*:
= 4 log

dx

x2n\oJ-)dx
o \ x

= W < 5.
This proves (3.8).
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We deduce that if r2 = ̂ (1 + rt), then

197

(V2 L
log

Thus there exists r, such that rx <r <r2 and

dr>-5U\-rx).

I log r-\ax\

We choose rx = t and r2 = <̂1 +1) and take this value of r. Then (3.6) and (3.7) show
that for | z | = r we have

log+ fF(z)| ^ log+ |F0(z)| — 10L

^ i ^ l o g + | F 0 ( 0 ) | - L - N - l - 1 0 L

if

Taking A t = 22AO, we deduce (3.4). To deduce the next statement we apply Rouche's
theorem.

Next we consider

and deduce that |F0(z)| > C for | z | = r and hence for \z\ < r, since F0(z) # 0 in
I z I < r. Thus

Z-fl:
log | F(z) | = log | F0(z) | + £ log

>iogc-2;iog|i-
L

>logC-Llog2+ £ log|z-f l j

> log C — L(log 2 + log 1 /h),

outside a set of circles, the sum of whose radii is at most 2eh, by Cartan's lemma [1, p.
46]. Writing <5 = 2eh, we obtain (3.5).

3.1. Hyperbolic distances
It is convenient to formulate (3.4) for an arbitrary simply connected domain and for

this we use hyperbolic distance [4, p. 47 et seq.]. Suppose that D is a simply connected
domain, and that wl,w2 are two points of D. Then the hyperbolic distance
d(wuw2; D) is defined by

1 +rd(w\, w2', D) = 2 log -i ,
1 — r

where D is mapped conformally onto \z\ < 1 so that wuw2 correspond to z = 0,r.
Our reformulation of Lemma 3 is
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198 W. K. HAYMAN AND YANG LO

LEMMA 4. Suppose that F(z) is regular in a simply connected domain D, and that the
equations F(z) = 0,1 have respectively L and N roots in D, where L, N are finite. Suppose
that C > 1 and that wt is a point of D, such that

\og\F(wi)\> Aie
2d{\ogC + L + N+l},

where d > 0. Then for \ a \ < C, the equation F(z) = a has at most L roots in the
subdomain D' of points w of D, such that

diw^w^) < d.

Lemma 4 is a consequence of the first parts of Lemma 3 and conformal mapping.
Finally, we need a lemma on hyperbolic distances.

LEMMA 5. Suppose that D is the domain given by

| a r g z | < a , R/K < \z\ < KR,

where K > ea. Let D' be the subdomain of D given by

| a rgz |<a( l -<5) , e*R/K < \z\ < KR/ea,

where 5 is a positive number. Let wl be a point ofD'on\z\ = R, and let w2 be any other
point of D'. Then

We assume first that

R = 1, a = $n, wx = 1, w2 = r,

where 2/K < r < 1. Then D contains the disk

Do: | w— 11 < 1-X"1.

Since hyperbolic distances decrease with expanding domain we deduce that

rf(Wl,w2;D) < d(wuw2;D0) = ilog-^-^:^—... , „, y - t ,

<i log
\-(\-2/K)/(\-\/K)

= ilog{2(K-l)}<ilogK+ilog2.

Next if 1 < r < K/2, we use the transformation w' = 1/w which maps the domains
D, D' into themselves and so leaves hyperbolic distances invariant. Thus if a = \n, and
Wj.Wj are on the positive axis, we have

(3.9) d(w1,w2;D)

Next we make a transformation

This maps D onto the rectangle P given by

, \rj\<a.
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 199

Since log/C > %n, P contains the disk Po: | £ | < \n. If w\ is any point on \z\ = 1,

| a rgz | < j7t(l —5), then w's corresponds to

Ci=in, where \rj\ <$n{ 1-3),

and Wj corresponds to C1 = 0. Thus

(3.10) 4 W l . w i ; i » *S d(0,i«;P0) = i l o g ^ .
1 71 6

A similar argument shows that if w'2 is any point such that

| w'21 = r, | arg w21 < %n(l-d), where e*7/C < r < Ke~in,

then

(3.11) d(vv2,u/2;D)<|log(2/<5).

Thus in all cases we deduce, if a = %n, using (3.9) to (3.11), that

d(w\, w'2;D) ^ d(w\, wx;D) + d(wu w2;D) + d{w2, w'2;D)

so that Lemma 5 is proved if a = jn, R = 1.
In the general case we consider the transformation

Z = (z/R)n'{2a).

This maps D, D' onto the domains we have just considered with the same value of d,
and Knl{2a) instead of K. Since hyperbolic distances are invariant under conformal
maps, we deduce Lemma 5 in the general case.

4. Proof of Theorem 1

We shall deduce Theorem 1 from the following somewhat stronger result.

THEOREM 3. Suppose thatf(z) is regular in S(a, jS), and that there exists an increasing
sequence rv of positive numbers satisfying (2.1), (2.3), and

(4.1) rv+1 ^ rv", where v = 1,2,...,

and that k(O,S') ̂  p. Suppose also that 0 < p < n/(P — a), and that

(4.2) 1 < n <

Then we have for every a with at most one exception k(a, S) ^ p', where p' is the positive
root of the equation

( 4 3 )

COROLLARY 1. If p = n/(P — a) and (4.1) holds for some finite n then
k(a,S) ^ p(V(4 + 2//7)—%} for every a with at most one exception.
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2 0 0 W. K. HAYMAN AND YANG LO

COROLLARY 2. If p < 7r/(/?-a) and (4.1) and (4.2) hold then k{a,S) > Ofor every a
with at most one exception.

COROLLARY 3. If p < 7r/(/?-a) and (2.2) holds then k{a,S) $s p for every a with at
most one exception.

Before proving Theorem 3 we shall deduce the corollaries from Theorem 3. We note
that Corollary 3 is simply a restatement of Theorem 1.

Suppose first that p < n/(f} — cc). The condition (4.2) ensures that the left-hand side of
(4.3) is negative when p' = 0 and positive when p' = p. Thus the equation (4.3) has a
root p', such that 0 < p' < p and Corollary 2 follows from Theorem 3. Also if n = 1 we
have p' = p in (4.3) and so p' approaches p as n tends to 1. If (2.2) holds we may apply
Theorem 3 with n arbitrarily close to 1 and obtain the conclusion with p' arbitrarily
close to p and this yields Corollary 3, i.e. Theorem 1.

Finally, if p = n/(^ — a) and rj > 1, then the final term of (4.2) is no restriction, so
with fixed rj we may apply Theorem 3 with p - e instead of p, where £ is a sufficiently
small positive number. Letting £ tend to zero we obtain the conclusion k(a, S) ^ p' for
every a with at most one exception, where p' is the positive root of the equation

that is,

P'=

This is Corollary 1.
Letting rj tend to 1 we obtain the conclusion of Theorem 1 also in this case. On the

other hand, if p > TT/(/? — a), then Theorem 1 is a consequence of Theorem A. Thus
assuming Theorem 3, we have proved Theorem 1 in all cases.

4.1. Proof of Theorem 3

To prove Theorem 3, we may suppose, without loss of generality, that a = — /?, since
otherwise we may consider f(ze~w) instead of/(z), where d = j(a + P). Next we
suppose that Theorem 3 is false and obtain a contradiction. Suppose then that
k(a,S) < px and k(b,S) < p l 5 where a # b and px < p'. We consider

instead of/(z). For this function we have the conditions

k(0,S)<pu k(l,S)<pl, k(ao,S')^p,

where a0 = a/(a — b). Also if p2 < p, we have, for all sufficiently large v,

(4.4) logM(rv ,S ' )>r/ 2 .

We write a instead of /? so that D is the angle S( — a, a) and S' the angle S( — a + S, a — d)
for some positive S. We also have, for large r,

(4.5) n(r,
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 201

a n d we c h o o s e p 2 so n e a r p t h a t px < p 2 < p a n d

(4.6)

This is possible since px < p' and since (4.3) holds.
We choose numbers r\x and rj2 such that

(4.7)

and

(4.8) v\xr\2 = »/.

This is possible in view of (4.6). For every large v we shall apply Lemma 4 twice. We
first take for D the domain

rJK < |z | < Krv, | a rgz |<a ,
where

(4.9) X = eV1,

and for zx a point on | zx \ = rv, | argzx | < a(l — S), such that

log | FfzJI > r v » .

This is possible in view of (4.4). Let D' be the domain

earJK<\z\<r,Ke-\

Then it follows from Lemma 5, that if z2 is any point of D', we have

d(zuz2;D) <^-\ogK + \og.
4a / o

Also by (4.5) the number of roots of the equations F(z) = 0,1 in D total at most (Krv)
Pl.

To show that the hypotheses and so the conclusions of Lemma 4 hold, we must prove
that

[2a

with C > | a0 \. In view of (4.9) this is satisfied for large v if

r / 2 >

which is true since, by (4.7),

(4.10)

We deduce that the equation F(z) = a0 has at most (Krv)
Pi roots in

In particular, for rv ̂  r ̂  rv
ni, the equation has at most (Krv)

Pi = (earv
r")Pl roots in

(4.11) | a rgz |<a( l -<5) , | r < | z | < r .

Thus it follows from (4.10) that for this range of r, the number of roots is O(rpi) in
(4.11).
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202 W. K. HAYMAN AND YANG LO

Next we shall obtain the same conclusion for rj1 ^ r ̂  rv + 1. For this purpose we
apply Lemma 4 again, taking for D the domain

^ » , | a rgz |<a( l -<5) ,

where
K _ ^pt-y i r t\\ <• ^p^r ( 1 - 1 / 1 2 )
A . — Z C f y + l / ' v ^ Z C ' V + 1 •>

by (4.1) and (4.8). The number of roots in D of the equations F(z) - 0,1 does not exceed
(earv+1)pl by (4.5). We take for zx a point on

|z | = rv+1, | a rgz |<a( l -<5) ,

such that log | / ( z j | > rv+l
P2. Using Lemma 5, we see that the domain D' of Lemma 4

includes the sectorial region

(4.12) | a rgz |<a( l -<5) , K " ' < | z | < rv+1,

provided that

rv+l
p2 > 2/l1{

and this is the case for large v, since by (4.7), p1+(7i/2a)(l — l/f/2) < p2. We can
therefore apply Lemma 4, and deduce that the equation F(z) = a0 has at most
(earv+1)Pl roots in (4.11) and hence 0{rv

nipl) roots, since by (4.1) and (4.8) we have

I2P1-P2 <(i2-l)(p2-n/(2<x))<0.

Thus, in particular, F(z) = a0 has O(rp2) roots in (4.11) for rv
ni ^ r ̂  rv+1. We had

previously obtained the same conclusion for rv ^ r ̂  rv
ni, and deduce that this result

is true for all large r. By adding the roots of F(z) = a0 over the sectors

2 " V < | z | <21-f cr, |argz | <a(l-<5)

for k = 1 to 00, we deduce that F(z) = a0 has O(rP2) roots in

|argz | <a(l-<5), | z | < r ,

so that k(a0, S') ^ p2, contrary to hypothesis. This contradiction proves Theorem 3
and so completes the proof of Theorem 1 also.

5. Borel directions

Suppose that/(z) is meromorphic in an angle S(a,/?) and that a < 0O < /?. We say
that the ray argz = 00 is a Borel direction of order pforf[5, p. 32] if, for every small
positive <5 and every a in the closed plane with at most two exceptions, we have

The following strengthened form of Theorem A is due to Valiron [5].

THEOREM B. If f{z) satisfies the hypotheses of Theorem A, then f(z) has a Borel
direction of order p = k(S') in S'.

Valiron's technique yields an analogous extension of Theorem 1. This is
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 2 0 3

THEOREM 4. Iff(z) satisfies the hypotheses of Theorem 1, then f(z) has a Borel
direction of order p in S'.

We need a preliminary result due to Valiron [5, p. 31]. In our terminology a slightly
weaker form of this result is

LEMMA 6. Suppose thatf(z) is meromorphic in an angle S and that k{a, S) ^ a, for three
distinct values a = ai in the closed plane, where a > 0. Then

k{a, S') ^ a

for every S' and all complex a outside a set E of measure zero.

Theorem 2 shows that the exceptional set E need not be empty. We can now prove
Theorem 4. Suppose that, contrary to this, no ray arg z = 8 for a' ^ 6 < /?' is a Borel
direction of order p for/, where / satisfies the hypotheses of Theorem 1. Since/is
regular this implies that for each such 0 there exists a positive <5 and two finite complex
values fli and a2 such that

k{aj,S(6-d,6 + 3)} < p(6) < p, for ; = 1,2.

Using Lemma 6, we deduce that k{a,S{6-\5,0+%5)} s$ p(0) for a outside £(0),
where E(6) has measure zero.

It follows from the Heine-Borel theorem that there are a finite number of 0's, dl to
0N in a' ^ 9 ^ /?', such that the corresponding intervals {0j—j8j,dj+$5j) cover (a',/?')-
If Ej are the corresponding exceptional sets E(6j) and E = [j"= { E{9j), then we deduce
that for a outside E we have

'= max p(6j) < p.
j=l N

Here E has measure zero and

so that S' lies in the interior of Sv But this contradicts Theorem 1, with Sl instead of S,
since Theorem 1 asserts that k(a, Sx) ^ p for every a with at most one exception. This
contradiction proves Theorem 4.

6. Construction of the counter-example

We now start the proof of Theorem 2. The rough idea is as follows. We express/(z)
as a product of two functions/(z) =/i(zy2(z). The function/^z) behaves rather like a
Blaschke product. It is uniformly bounded in the right half-plane and is small and has
zeros of order p in a sequence (class I) of annuli; in these annuli/2(z) is not too large so
that f(z) is small. On the other hand, in another sequence (class II) of annuli /2(z)
behaves like a classical Lindelof function of order p, with negative zeros, while/x(z) is
not too small. Thus/2(z) and hence/(z) is large of order p in the class II annuli. This
shows that /c(0, S) ^ p and k(S) S? p. For a # 0, the equation/(z) = a can have at most
a finite number of roots outside an intermediate sequence (class III) of annuli, where
/(z) is neither large nor small and in these annuli both/x(z) and/2(z) vary slowly so that
k(a,S') ^ p' < p. In this section we define/x(z),/2(z), and/(z) =/i(zy2(z). The relevant
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204 W. K. HAYMAN AND YANG LO

inequalities for these three functions are established in §§ 7 to 9 and the proof of
Theorem 2 is completed in § 10.

We suppose that (2.4) and (2.5) hold and write

(6.1) n = K2.

By choosing a subsequence if necessary we may assume that r t > 4,

and
rv >

Using these inequalities in

(6.2) rv_

We now set

(6.3)

and

. 2 r v_1K(l+p)/[2-iC(l-

turn we obtain

i2n<rviK(l+P){xrvy

sv = rv
K

p)], for v ^ 2.

"(1"P)<(K)2-

(6.4) rv =

It follows from (6.1), (2.4), and (2.5) that

p + n{l-p)-K = p+K2{l-p)-K=(K-l)(K-

so that

(6.5) tv = o(sv) as v -* oo.

We now define

where the product Y\i is taken over all integers n which satisfy

(6.7) sv < n ^ sv + (sv)
p for some v.

Next we write

(6.8) /2(z) = ri2(l+^"1/p),
where the product J^2 is taken over all integers n which satisfy

(6.9) rv" < nllp < rv + 1 for some v,

and set

(6.10) f(z) =/1(2)/2(z).

We shall write C for positive constants depending on 5,ri,p, and Clt C2 for particular
such constants. We set z = rel°.

7. Estimates for f^z)

We proceed to prove

LEMMA 7. Ifv is large and \8\ ̂  jn—f<5, then

(7.1) ^
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 205

and

(7.2) \og\fl(z)\<-C1^—, for rv".

:—jS, then

(7.3)

(7.4)

log|/1(z)|>-C2-?r^, for

s
log I fx{z) \>-C2 ^ , for rv\

*, for rv" ^ r

and, for some branch of the logarithm,

(7.5) I log I/Kz) | | < C V * * -

Finally, f^z) is entire and

(7.6) |/l(z)|<2, for\6\ <%n-5)andO<r<oo.

We note that for |0 | ̂ ^n-^S, we have \e~2nz\ < 1 and

z — ine'

z — in
< 1, for every integer n.

Thus|/l(z)| < l + |e~2"z| <2 in this angle. This proves (7.6). Also

1 - z — ine

z — in

\z — in\—\z — ine
\z-in\2

2rn(sin(d + d)-sin
\z-in\2

-id\2

z-in

Thus if 16\ ^ \n-\d, we deduce that cos(0+|<5) > sin(^/6), and

(7.7)
z — in

z — ine -is

z — in
< 1 -

z-in

Suppose first that r < sv and that n lies in the range (6.7) for this value of v. Then
Csv < \z — in\ < Csv. Thus if ]7[i(z) denotes the product in (6.6), (7.7) yields

where N is the number of integers in the range (6.7). Since sv
p > 4* = 2, we deduce that

N ^ %sv", so that

If r ^ rv, we see that rsv
p~l ^ r^-m-p) > r ^ t \n v i e w of (2.4), (2.5), and (6.1). Using

(7.6) with (6.6) we deduce (7.1). We also see that, for r ̂  sv,

Cr < \z — in\ < Cr,
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206 W. K. HAYMAN AND YANG LO

so that in this case (6.7) and (7.7) imply that

log I rii(*) I < - CNsJr < - C(svY
 +p/r,

and this yields (7.2) in view of (7.6) and K(\ + p) > rj.
Next we turn to the lower bounds for | fx{z) |, which are a little trickier. We suppose

first that

(7.8) r ^ r ^ r M + 1

and estimate the contribution to the product in (6.6) from the ranges (6.7) for various v.
Suppose first that v > p.. Then if n lies in the range (6.7) we have, recalling (6.3),

Thus if n is large, we have for all 9, since K > 1,

, fzei6-in\\ Cr Cr
log

z-in J\ n sv

Since p < 1, and sv+1 > 2sv by (6.2) and (6.3), the product in (6.6) converges absolutely
and locally uniformly. In fact the contribution to | logfl^z) | from the range (6.7) is at
most Crsv

p/sv = Crsv
p~K Thus

log
ze*-in

z-in

where the sum in ^ is taken for n in all the ranges v with v > fx.
Next if v < n, we see similarly that the contribution to log | l/]~Ii(z)l from n in the

range (6.7) is at most

Thus the contribution from all the ranges (6.7) with v < n is at most

Finally, if r lies in the range (7.8), r < js^, and n lies in the range (6.7) with v = n, we
have

I z-in I >in>isM.

Thus we see that the contribution to log 11/J~[i(z)l fr°m t n e n m t n e range (6.7) with
v = n, is at most O s / " 1 = Crr^"-". Also \e~Uz\ < C < 1, if |0 | <&-& and
r > 1. Thus we obtain for rM ̂  r ̂  js^ and \9\ < jn—jd,

In view of (6.2) and (7.8), we have

r/i - 1
K ( l + p ) / _ < r K(l+p)/r < K(p-l) < K(p-l)

Thus
\og\f1(z)\>-C(l+rr«p-»).

Since K(l -p) < 1, we deduce (7.3).
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 2 0 7

Suppose next that r lies in the range (7.8) and 4s,, ^ r ̂  rj. Then if n lies in the
range (6.7) with v = fi, we have n < 2sM, so that

, fl-ine-id/z\\ „ ,
log ' )\<Cn/r.

Thus the contribution of this range of n to | log J7i(z) I *s a t m o s t

CsM
(1 +p)/r = Cr^1 +p)/r in this case. We recall our earlier work to get (7.3) and obtain

in view of the first inequality in (6.2) with v = fi + 1, and r ̂  rj. This proves (7.4), since
K(\+p)>ri = K2.

Suppose finally that rj < r ̂  rll + v In this case our previous estimates yield

(7.9) log|/i(z)| > - C ( l +

We note that n = K2, so that

Also 0 < l + p — X < p i n view of (2.4) and (2.5). Thus
) K r(l+p-K)/K < rp-(K-l) K r

r K r < r K r

Hence rtl
K(l+p)/r < rp-<«-Dd-p). Next since r < rM + 1, we have

„ K(p-l) ^ 1+K(p-1) _ p-(K-l)d-p)

Thus (7.9) and (7.6) yield (7.5).
We have seen that the product Y\i is absolutely convergent. Also/^z) is regular in

the plane except possibly at the points z = in, and the poles at these points in the
product Y\i(z) a r e cancelled out by the zeros of e~2nz— 1. Thus fy(z) is an entire
function. Further,/^) has order 1, mean type. For this is true of the factor (e~2nz — 1)
and the product Y\i has order p less than 1. Thus the proof of Lemma 7 is complete.

8. The estimates for f2(z)

We next prove

LEMMA 8. We have for z = rew, with \0\ < \n—\5, and large v,

(8.1) C3r' < log| f2(z)| <Csp, i / r v " ^ r ^ r v + 1,

(8.2) C5r"(l+log(r/rv)) < log|/2(z)| < C6r/(1 + log(r/rv)), ifrv <r^tv,

(8.3) CVr/'"1* < log | /2(z) | < Csrr*'-", iftv ^ r ̂  rv".

We suppose that t^ is defined by (6.4) and that

(8.4) t^r^t^i.

First we derive the lower bounds in (8.1) to (8.3).
In considering the ranges (6.9) for different values of v, we note that since \6\ <jit,

we have

(8.5) l l + z n " 1 ' " ^ 1.
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208 W. K. HAYMAN AND YANG LO

Thus when obtaining lower bounds for | /2(z) | we may confine ourselves to the single
range v = n in (6.9). Suppose first that

(8.6)

We note that,

(8.7)

Thus

for |0 |

11 +

t < r < r n

'•fl ^z ' " ^ ' ft •

<%n-5),

m _llo2 2rcos0 r2 ^ / rs in |5
Z" «1/p ' «2/p ^ \ «1/p

logll+zn- l̂̂ log 1 + ^ P bCrn-1'".

Since by (6.2) we have r̂  + 1 > 2 ^ , we deduce from (8.5) that

where N is the number of integers n satisfying rj ^ n1/p ^ Irj, that is
r/" ^ n ̂  2pr/". Thus, when \i is large,

N^(2 p - l ) r / " - l>Cr / " ,

and
log I/2(z) I >Crr;p"1>"

in the range (8.6), and this proves the lower bound in (8.3).
Next suppose that

(8.8) V ^ r ^ r M + 1 .

We now confine ourselves to estimating the product for/2(z) over those integers n
which lie in the range (6.9) with v = n and also satisfy 2~"ir < n1/p < 2*r. By
considering separately the cases r ̂  2 * ^ ^ 2~*rM+1 and r > 2*rM

n, we see that the
number N of these integers n satisfies

N ^ r p ( l - 2 - p / 2 ) - l >Crp.

Also, for n in this range, log11 + zn"1/p| > C. Thus in the range (8.8) we have, using
(8.5),

log | /2(z) | >CN>Crp,

which yields the left-hand side of (8.1).
Finally, suppose that

(8-9) rM+1 ^ r ^ + 1 .

We confine ourselves now to the product over integers n which satisfy

(8.10) K + i < " 1 / P ^ + i-

These lie in the range (6.9) with v = /i, and (8.7) yields

| l + z n ~ 1 / p | ^ l+rrT1/psin{(5= 1 + O T 1 / P ^ l + Cor/rM + 1.

Thus if N is the number of integers in the range (8.10) we obtain

log|/2(z)| ^ Nlog(l+Cor/r ,+ 1) ^ Cr,+ 1
plog(l +Cor/rM+1).

If r ^ C0"
2rM+15 we obtain log | /2(z) | ^ Crti + / , which yields the lower bound in (8.2).
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 209

r^tn + i t h e n Q//rM + 1 ^ (r/rM + 1)* and we obtain

which again yields the lower bound in (8.2). This completes the proof of the lower
bounds in Lemma 8.

To establish the upper bounds we suppose that /•„ <, r ^ rfl+x and consider first the
range rj ^ r ^ rM + 1. In this range

log|/2(z)| ^ £ log(l +rn"1^) ^ log(l + r)+ f l o g ( l

We set x = rt~1/p in the integral and obtain

log|/2(z)I

and this yields the right-hand side of (8.1).
Next suppose that

(8.11) r^r

Then recalling (6.9) we see that

where the sums £ i , £ 2
 a r e taken over the ranges n ^ rf, and n ^ rj}p respectively.

Thus, in view of (6.9),

(8.12) £2 < £2r>T1/p = r ^ n " 1

Also if N is the integral part of rj>, then
/ •JV+l

log(l

L» x-p-i\og(l+x)dx

l o g ( 1 + r ) + CK|^±i^Y,ogf er

^log(l+r) + C(N + l)log

Thus

(8.13) £1 < C{log(l +r) + r/(log(r/rj+1)} < Cr/(log(r//g +1).

Thus in the range (8.11) we obtain, from (8.12) and (8.13),

(8.14) log|/2(z)| < C{r

Suppose first that /•„ < r ^ ^/logrM = r/+"(1~p). Then rr^-" ^ /•/, and (8.14)
yields

log|/2(z)|<Cr/(log(r/r,)

which implies the right-hand side of (8.2). Suppose next that

5388.3.44 N
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210 W. K. HAYMAN AND YANG LO

Then (6.4) shows that r/rM ^ r^(l|"1)(1"p). Thus, in view of (6.4) and since n > 1,

r r / " " 1 ' ^ r/logrM ^ Cr/logJr/rJ,

and (8.14) again yields the right-hand side of (8.2).
Suppose, finally that rM ^ r < rj. Then

/ r j ^ r/log(r/r/+"<'-'*) + &/logr.

Thus in this range (8.14) yields the right-hand side of (8.3) and the proof of Lemma 8 is
complete.

9. Estimates for f(z)

We shall use the estimates of Lemmas 7 and 8 to show that f(z) is either large or
small except when | z | is comparable to certain numbers pv and qv. Thus, except in this
case, the equation/(z) = a can have no solutions. Near \z\ = pv or qv the order of/is
at most p' (defined in (2.8)) and so is the order of the number of solutions of/(z) = a.
We now make these estimates more precise.

We set

(9.1) pv =
(9.2) qv =

We note, in view of (2.4), (2.5), and (6.1), that

so that, in view of (6.4),

(9.3) rv = o(pv) and pv = o(fv).

Similarly,

Thus, in view of (6.3),

sv = o(qv) and qv = o(rv").

Using this and (6.2), (6.5), (9.3) we see that the following are in order of increasing
magnitude:

(9.4) rv, p v , tv, sv, qv, rv , fv + l.

We shall suppose we are given a number e, such that 0 < e < 1.

LEMMA 9. We have for z = reie, with \6\ < \%—\b, and v > v0,

(9.5) l / ( z ) | < e

and

(9-6) l / ( * ) l > l / s
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 2 1 1

We consider first the range rf ^ r ^ rv+1. In this range we deduce from (8.1) and
(7.5) that

| =log|/1(z)| + log|/2(z)| > C3r'-C2r'-<*-1><1-<»,

and this proves (9.6) in this case.
Next recall (9.1) and suppose that rv ^ r ^ pv. Then (7.3) and (8.2) yield, in view of

(9.4),

log|/(z)| > C5rv'(l + log(r/rv))- C2rr**-»

(9.7) >iC5r/(l+log(r/rv))

if C2rrv
K(p-" < iC5r/(l + log(r/rv)), that is, if

The condition is certainly satisfied if

If, on the other hand, (C5/2C2)r/+IC(1"p) < r, we have

log ->(K- l ) ( l -p ) log r v

and so it is enough to assume that

in view of (9.1). Since the right-hand side of (9.7) is large for large v, we deduce (9.6) in
this case.

Suppose next that pv ^ r ^ tv. Then (7.1) and (8.2) yield, in view of (9.1), (9.4), and
(6.3),

< - Csr^' - " + 2C6(K - l)r/ log rv

<-$Clrrv
K«>-1\

if 2C6(K:-l)r/logrv <iC1rr / ( p - 1 ) , that is if

Thus (9.5) holds in this case.
Suppose next that tv < r ^ 5V. Then (7.1) and (8.3) yield for large v, in view of (9.4)

and (6.4),
log | f(z) | < -C1rrv

K«

since r > tv, and this yields (9.5).
Suppose now that sv < r ^ qv. Then (7.2) and (8.3) yield, in view of (9.4),

X(l+p) rK(l+p)

log I f(z)\<-C^
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212 W. K. HAYMAN AND YANG LO

for large v, provided that
i r< r K(\+p)

r rr "(P-1> < l v

By (9.2) this is equivalent to r2 <(CJ(2Cs))qv
2, and this yields (9.5). Finally, if

qv < r ̂  rv\ we have from (7.4), (8.3), (9.4), and (6.3),

K(l+p)
log|/(z)| > C ^ r / " - ^ - ^ ^ — >\C1rr«*-»

if C2rv
Kll+t>)/r < iC7rrv"

("-1), that is if

r2 > (2C2/C7)gv
2,

and this proves (9.6) in this case and completes the proof of Lemma 9.

10. Proof of Theorem 2

It is evident from the construction of/(z) that/(z) is an entire function with zeros at
z = ine~id, for n in the ranges (6.7). If we take r = 2sv, then/(z) has about (|r)p zeros in
| z | < r, | arg z | ̂  |TT — S. Thus if S, S' are the sectors

Iargz| ^ ik - i<5 , |argz| ^i7r-<5,

Next it follows from Lemmas 7 and 8 and, in particular, from (7.5) and (8.1) that, for
z = reie in S and rv

n ̂  r ̂  rv+1, we have

log I f(z) | >KV' ,

while log | /(z) | < Crp for other values of r. Thus fc(S) = fe(S') = p, and (2.6) holds.
We proved in Lemma 7 that/^z) is an entire function. The function/2(z) has order p

and so does the product \\x in (6.6). Since (e~2nz— 1) has order 1, mean type, so does

It remains to investigate the number of roots of the equation/(z) = a, when a ̂  0,
and z lies in S.

It follows from Lemma 9, that if r is large, depending on a, then the only solutions of
/(z) = a in S lie in the annuli

Cloqv<r<Cllqv and Cx2pv<r <C9pv.

It is convenient to expand these annuli slightly and to consider the sectors

(10.1) K10^<r<2Cll4v, |0|<iw-#,

(10.2) i C 1 2 p v < r < 2 C 9 p v , |0|<i7i-f<5.

We need a final lemma.

LEMMA 10. As z -> oo through the sectors (10.1) and (10.2) we fiaue

(10.3) 0

where p' is gu'uen by (2.8).
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GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE 2 1 3

Suppose first that (10.1) holds. Then (9.4), (7.2), (7.4), (6.3), (9.2), and (8.3) show that

We note that

9- (\+p) + K(l-p)

(K-\)(l-p2)

in view of (2.4) and (2.5), so that (10.3) holds in (10.1).
Similarly, in the range (10.2) we deduce from (9.1), (9.3), (6.5), (7.1), (7.3), and (8.2)

that

| log | / (z) | | = O(r/log r¥)

— o\r log r).
We note that

p p2 + Kp(l-p)-p

(K + l)(p + K(l-p)) 3V

in view of (2.4) and (2.5), and so (10.3) holds also in this range and Lemma 10 is proved.

We now map the unit circle | w | < 1 onto the sector

i C 1 0 < | z | < 2 C n , |a rgz | <£TT—§<5,

by a function z = <p(w), such that (p(0) = C10. Let R = C13 be the smallest number
such that the image of | w | < R under this map includes the sector

Cio < M < C n , I arg z | <\n-%5.

Then 0 < R < 1. Consider the function

F(w)=f{qv(p(w)}-a.

We apply Jensen's theorem to F(w) in | w | < 1 and note that in view of Lemma 10 we
have, for large v,

log| F(w)| <q/ in | vv| < 1.

Thus Jensen's formula shows that if n is the number of zeros of F(w) in | w | < R, we
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214 GROWTH AND VALUES OF FUNCTIONS REGULAR IN AN ANGLE

have

n\og- < q/ + \og
R F(0).

= q/-\og\f(C10qv)-a\ < q/+ \ogi^-

if v is large in view of (9.5). Since n exceeds the number of roots of/(z) = a in the region

(10.4) Cloqv<\z\<Cuqv, |argz| < fr-fa

We see that the number of zeros of/(z) — a in (10.4) is 0{q/).
Similarly, by mapping | w | < 1 onto the sector

i C 1 2 < | z | < 2 C 9 , |argz|<i7r-f<5,

by q>{w), so that q>(0) = C9, we deduce that the number of zeros of f(z) — a in

(10.5) C 1 2 p v < | z | < C 9 p v , |argz|<!7r-f<5,

is O(p/). Since all but a finite number of the zeros of/(z) — a in S lie in the regions
(10.4) and (10.5) in view of Lemma 9, we deduce that, for every a ^ 0,

n(r,a,S) = O{rp) as r -> oo,

so that k(a, S) < p'. This completes the proof of Theorem 2.

In conclusion we should like to express our gratitude to Dame Mary Cartwright for
her work in discovering the conjecture of Littlewood mentioned in § 1, and for
bringing it to our attention, and to Trinity College, Cambridge for allowing us to see
this material. We should also like to thank the referee, Professor David Drasin, for his
careful reading and many detailed suggestions, which have greatly improved this
paper.
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