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1. Introduction

In the theory of meromorphic functions W. K. Hayman [3] made the following
important conjecture. Suppose that F is a family of functions meromorphic in a
domain D and that k is a positive integer. If /(z) =/= 0 and f{k){z) ^ 1 in D for all / in
F, then F is normal in D. Recently Ku Yung-hsing [5] succeeded in proving this. The
present paper contains a natural and direct proof of the following theorem.

THEOREM 1. If k is a positive integer, f(z) is meromorphic in \z\ < \, and
f(z) ± 0, /(fc)(z) ± 1 there, then either \f{z)\ < 1 or | /(z)| > C uniformly in
\z\ < 1/32, where C is a positive constant which depends only on k.

Ku's result follows at once from Theorem 1. As another application we derive a
result on the existence of a singular direction.

THEOREM 2. Let f(z) be a function meromorphic in the plane. If

then there is a number 00 such that 0 ^ 90 < 2n and for every positive e and every
positive integer k, either f(z) assumes every finite value infinitely often or f(k){z)
assumes every finite value except zero infinitely often in the angle |argz — 0o\ < e.

I am much indebted to Dr. I. N. Baker for his valuable suggestions.

2. Preliminary lemmas

LEMMA 1. Suppose that f(z) is meromorphic in \z\ < R (0 < R ^ oo). If
/ (0) ± 0, oo, /(k)(0) ± 1 and / ( k + 1)(0) ^ 0, then we have

T(r,f) < N(r,f) + N(r,jj +N^tj^-^j -N(T,J^ +S(r,f)

for 0 < r < R, where

f(k)

S(r,f) = m[r,^-

+ log + log2. (2)
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Lemma 1 is substantially due to H. Milloux (see for example [1, 2]), but there is
some difference in the error term S{r, / ) . In fact the identity

f f ' /
leads to

A'7/ vr'V
lk) -l

+ l o g 2 '

Applying the Jensen-Nevanlinna formula to m{ r, 1//) and m(r, (/(k) — l ) / / ( k + 1 )),
obtain from (3) that

T(r, f)
{k)

+S(r,f),

where S(r, f) is given by (2). Since

r JL

holds, the assertion of the lemma follows.

r -Nlr

LEMMA 2. Suppose that k is a positive integer and that f(z) is a junction
meromorphic in \z\ < R (0 < R ^ oo) and such that / (0) ^ 0, oo, /(k)(0) ^ 1,
/(fc+1)(0) f Oand

Then we have

(4)

for 0 < r < R, where

( 2\ ( /
S ( r , / ) = 2 + - m r,

/ w - / /

jTlOg (5)

Lemma 2 is Theorem 1 of Hayman [1] except for a slight improvement in the
expression for S{r, / ) , which is important for our applications. The proof is exactly
that of [1], except for observing that the quantity there denoted by S^rj can be
expressed by our Lemma 1 in the form (2) instead of the form used by Hayman.
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LEMMA 3 (Hiong King-lai [4]). Suppose that f{z) is meromorphic in \z\ < R
(0 < R ^ oo) and that k is a positive integer. J / / (0 ) ^ 0, oo then we have

f{k)\ ( 1 1 1
^ J < C h + l o g + p + l o g + + l o g + + l o g + l o g + — — + I o g + T ( p , / )+ l o g + l o g l o g

for 0 < r < p < R, where C is a positive constant which depends only on k.

LEMMA 4 [6; pp. 24-25]. Suppose that U(r) is a non-negative and non-decreasing
function in the interval [/?l5 i?2] (0 < Rl < R2 < oo), and that a and b are positive
constants satisfying b > (a + 2)2. / / the inequality

U(r) < a Mog+ c/(p) + log-^-J +b

holds for every pair of r, p (Rt < r < p < R2), then we have

U{r) < 2a\og(R/{R-r)) + 2b.

Notation. Throughout the paper C will denote a positive constant which
depends at most on the integer k. It will not necessarily be the same constant
throughout the course of the argument.

LEMMA 5. Suppose that f satisfies the assumptions of Lemma 2 and suppose that
in addition f(z) ± 0, fk){z) =/= 1 in \z\ < R. Then we have

logM(r i
\ fj R-r\ 6 R-rJ'

for 0 < r < R, where

B = log+ K + log + i +log+ |/(0)| + log+|/+ | /< f c> I / •

\(k + l ) /

Proof In this case T{r, f) < S{r, f) in (4), (5). We estimate the terms of (5).
Choosing p' and p such that 0 < r < p' = {p + r)/2 < p < R, Nevanlinna's estimate
(see for example [2; p. 36]) gives

/(fc+i)

+ log+ T(p',fm)\ (7)
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and
f(k + 2)

+log+ log+ J T ^ o j j + l o g +

(The usual estimate would give (7) with log+ T(p',/( fc) —1) as its last term, but

For the terms log+ T(p', fU)) (j = k,k + \), which appear in (7) and (8) we have

log+ r(p',/0)) ^ log +

< log+

Thus from (4), (5), (7) and (8) we have

T(r, f)<C\\ + log + p' + log + - +log+ -^— +log+ T(p', f)
[ r p -r

+ loS + l o S + .wtwm I, + 1 ° 8 + l o B + 77

2 + | ^ log l/(0)| + (̂ 2 + ^ log |/<fc>(0) -11 + 2 log

{log

(9)

We apply Lemma 3 to the last two terms of (9) with the r, p of Lemma 3 equal to
p' and p respectively. Noting the relations between r, p', p and R we have in the case
when R/2 < r < p < R that

T (r,^-) <CU +log+ R + \og+ i +log+ — +log+ log+ - 1

1/(0)1

+ l o g + log+ i/<*)(0)n + l 0 g + l0g+ i /^^ ( o) i + l o g +
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For ft > 0, 0 < x < oo we have

Applying this with x = |/(0)| and x = | / ( k ) ( 0 ) - l | , assuming that R/2 < r < p < R
1 O

(so that log+ ^ log hlog+—) and noting that
p — r p — r R

log+ T(p, f) = log+ {T(p, l / / ) + log|/(0)|} ^ log+ T(p,

(10) yields that

(11)

where B is given by (6). Increasing Cx so that Ct > (C2 + 2)2, we can then apply
Lemma 4 to T(r, \/f) and deduce that

T(r,]/f) < c{\ +B + \og (R/(R -r))), (R/2 < r < R). (12)

For any r such that 0 < r < R we have

/ 1\ R + 3r_(r
log M r , - < - T

j V 2 ' /

and by using (12) the proof of the lemma follows.

3. Proof OJf Theorem 1

Suppose that / satisfies the hypotheses of Theorem 1. The conclusions will
hold with C = 1 unless there are points z', z" such that |/(z')| > 1, l/(z")l ^ 1,
|z'| < 1/32, |z"| < 1/32, and thus by continuity a point zx such that

1/(^)1 = 1, | z , | < l / 3 2 . (13)

We assume that (13) holds and show that |/(z)| > C uniformly in \z\ < 1/32. There
are two mutually exclusive cases.

Case A. One has

fc + i

X \f{j)(z)\ > 1/4 uniformly in \z\ < 1/8.

It follows that
k + 1

; = 0 7

3
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MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES '293

and so if m(r,zx,f) and T{r,zx,f) denote m(r,f(z + zx)) and T(r,f{z + zx))
respectively, we have

j \ fc + l / fU)\
r , z 1 > 7 U X m(r,zx,

 J—- + log4(/c + 2) (0 < r < 3/32). (14)
J / j=o \ J J

Since N{r,zx, 1//) = 0, applying Lemma 3 to f{z+zx) yields in (14)

for 1/32 < r < p < 3/32. On using Jensen's theorem and noting that \f{zx)\ = 1,
the last term on the right can be replaced by log"1" T(p, zx,1//). On noting that

l o g + ( l / ( p - r ) ) ^ Iog(p/(p-r)) + log32

and that C is arbitrary, we can apply Lemma 4 to T(r, zl5 1//) in [1/32, 3/32] and
obtain

3 / 3 2

whence 7(5/64, zx,\/f) < C, and

log Af (1/32,1//) ^ \ogM(\/l6tzlt\/f) ^ 97(5/64, z l 5 1 / / ) < C.

Case B. There is a point z2 such that

I l/0)(z2)l < 1/4, |z2| < 1/8. (15)
j=o

We assert that there exists a point z0 on the segment ẑ TJ" such that

\r(k + i ) i \, > i 1 / 1 9 < | / ' ( f c + 1 ) C 7 ) | < 1 / 2 i r ( k ) C z ) l < 1 / 2 \ f ( z )\ < 1 / 2 (\6)

(This technique was also used in our earlier paper [8].)

In fact if |/(fc + 1)(z)| < 1/4 on T^ the inequality (15) leads to

r(*+1)(Orft

and so successively to

1 1

the last of these contradicts the fact that \f{zx)\ = 1. Thus there is a point z3 on z2zx

 14697750, 1982, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s/s2-25.2.288 by A

cadem
y O

f M
athem

atics A
nd System

s Sciences, C
as, W

iley O
nline L

ibrary on [24/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



294 YANG LO

such that | / ( k + 1)U3)l = 1/4 and |/ (k + 1)(z)| < 1/4 on zjzj. Clearly

/•(fc + 1) {t)dt < 1/3,

and by similar arguments

If | / ( k + 2)(z3)| ^ 1, we may take z3 to be the z0 in (16).

If | / ( k + 2)(z3)| < 1, we note that if | / ( k + 2)(*)l < 1 on J^TU then on

- + - + — <-
4 8 32 2 '

and so
1/3.

We then obtain |/0 )(z)l < 1/3 on zyz2 for j = 0 , 1 , . . . , k, which contradicts the fact

that | /(zj) | = 1. Then there is a point z4 on z3z{ such that \flk + 2){zA)\ = 1 and

|/(k + 2)(z)| < 1 on z^z~A. Since | z 3 - z 4 | < \z{-z2\ ^ (l/32) + (l/8) = 5/32, we have,

for every point of z2z4,

|/<fc + 1>(z3) | - |z 3 -z4 |
2324

Thus

and similarly

> 1/12,

< 1/2.

1/2,

1/2,

Thus in this case we may choose z0 = z4 in (16) and the validity of (16) has been
established in all cases.

We now apply Lemma 5 to / (z) in \z — zo\ < 7/8. The only condition which
needs checking follows from (16):

14- ?

From Lemma 5 we see that

logM(l /2 ,z 0 , l / / )<C,

log MO/32,1//) < logM(l/2,z0,1//) < C.
and hence

Remark. One may ask why we do not start our work from Hayman's inequality.
If we do so and note that the unique difference between Hayman's inequality and
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MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES 295

Lemma 2 is the appearance of m{r, f(k+x)lf(k)) in the former and m{r, f{k + l)/f) in the
latter, then a lemma which is analogous to Lemma 5 except in having B replaced by

ff = B + C l o g + l o g + ( l / | / w ( 0 ) | )

can be obtained. In order to eliminate the "initial values", we have to find a point z0

satisfying all the conditions in (16) and \fik)(z0)\ > C. It seems to me that this is
impossible. Ku [5] established three lemmas to estimate m(r, f{k + i)/f{k)) in which
the initial values are

log+ log+ |/(0)| + log+ log+ (l/ | /(0)|) + log + log+ |/(C0)l + log+ log+

where (0 is another point. His proof is ingenious, but not natural.

4. Proof of Theorem 2

According to a result of Valiron [7], if f{z) satisfies (1), then there exists a
sequence of discs

Gj: \z — Zj\ < Ej\Zj\, lim \zj\ = oo , lim e, = 0 ,
j - * X j - OC

such that f(z) takes every complex value n} times in Gj, with the exception of some
values contained in two spherical circles with radius e~"J provided that
lim (rij/loglzjl) = oo.

Denote by 60 an accumulation point of (argzJ5 j — 1,2,...). It is no loss in
generality to suppose that argz,-->0o ( ;-* oo). We shall prove that the ray
argz = 60 has the desired property of Theorem 2.

In fact, if it is not true, then there exist a positive number £, a positive integer k
and two finite values a,b {b =fc 0) such that f(z) =£ a, f(k){z) ^ b in the angle
| a rgz -0 o | < e.

When j is sufficiently large, the discs

G'j: \z — Zj\ < 32 SJ\ZJ\

are contained in |argz — 60\ < e. For every fixed), the function

b(32sj\zj\f

is meromorphic in \t\ < 1 and g^i) =/= 0, gf\t) =/= 1 there. Theorem 1 yields that
either \gj(t)\ < 1 or \gj{t)\ > C in |r| < 1/32.

(1) Suppose that \g}{t)\ < 1 uniformly in \t\ < 1/32, that is,

uniformly in Gj, when j is sufficiently large.
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296 MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES

Since the spherical distance between | z / + 1 and oo is

the image of G} under w = /(z) lies outside the set D of these points w' such that the
spherical distance |vv', oc| is less than (2|zJ-|

k + 1 ) " 1 . On the other hand, the image of G}

under vv = / ( z ) covers |w*l < oo, apart from two spherical circles with radius e~">,
where lim («j/log|Zj|) = oc. Putting rij = m l̂og|Zj-l, we have lim m} = oo. Thus the

j-oc j-cc

values which are not taken by f{z) in Gj can be contained in two spherical circles
with radius

e-»j _ e-mjlog|r,-| _ 1/|z.|'">.

Clearly these two circles cannot cover the spherical circles \w, oo| < l/2|zJ|
k + l and so

we derive a contradiction.

(2) Suppose that \gj{t)\ > C uniformly in |t| < 1/32.
Now we can suppose that E}\Z}\ > \ (j -* oo), for otherwise we can choose

Cj = max {EJ, 2/|Zj|) and replace the discs Gj by the larger discs \z-zj\ < ej|z,-|, which
satisfy the same conditions. Thus in \z\ < 1/32 we have

\f(z)-a\>C\b\(328j\zj\)
k>(nf\b\C.

Thus the image of Gj under w = f(z) is entirely disjoint from the fixed disc
\w — a\ <: C. But for large; this disc is not contained in any two spherical circles of
radius e~">. Thus we have a contradiction and Theorem 2 has been proved.
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