PRECISE ESTIMATE OF TOTAL DEFICIENCY OF MEROMORPHIC DERIVATIVES

Bv

LO YANG

Abstract. Let $f(z)$ be a transcendental meromorphic function in the finite plane and k be a positive integer. Then we have

$$
\sum_{a\in\mathbf{C}} \delta(a, f^{(k)}) \leq \frac{2k+2}{2k+1} .
$$

Moreover, if the order of $f(z)$ is finite, then we also have

$$
\sum_{a \in \hat{C}} \delta(a, f^{(k)}) \leq 2 - \frac{2k(1 - \Theta(\infty, f))}{1 + k(1 - \Theta(\infty, f))},
$$

where $\delta(a, f^{(k)})$ denotes the deficiency of the value a with respect to $f^{(k)}$ and $\Theta(\infty, f)$ is the ramification index of ∞ with respect to f.

1. Introduction

Suppose that $f(z)$ is a transcendental meromorphic function in the finite plane and a is a complex value which may be infinity. By R. Nevanlinna [16], [8], if

$$
\delta(a, f) = \liminf_{r \to \infty} \frac{m(r, 1/(f - a))}{T(r, f)}
$$

$$
= 1 - \limsup_{r \to \infty} \frac{N(r, 1/(f - a))}{T(r, f)}
$$

is positive, a is called a deficient value of $f(z)$ and $\delta(a, f)$ is its deficiency. (When $a = \infty$, $m(r, 1/(f-a))$ and $N(r, 1/(f-a))$ in the definition of $\delta(a, f)$ should be replaced by $m(r, f)$ and $N(r, f)$ respectively.) The most important and classical result is that the set of all deficient values of $f(z)$ is at most countable and the total deficiency does not exceed two (deficient relation [6], [8]). The upper bound of two is sharp in general.

When the order of $f(z)$ is less than 1, Edrei [3] obtained a precise estimate for the total deficiency by using the spread relation proved by Baernstein [1]. The deficiency problem, however, is still open for meromorphic functions of order bigger than 1, although a suitable bound has been suggested by Drasin and Weitsman [2].

Now we discuss the precise estimate of the total deficiency, not for the function $f(z)$ itself, but for its derivatives.

Let k be a positive integer. Hayman [5] pointed out that the inequality

$$
\sum_{a\in\mathbf{C}}\delta(a,f^{(k)})\leq\frac{k+2}{k+1}
$$

holds for any transcendental meromorphic function $f(z)$. In 1971, Mues [7] improved this result to

$$
\sum_{a\in\mathbf{C}} \delta(a, f^{(k)}) \leq \frac{k^2+5k+4}{k^2+4k+2}.
$$

In this paper, we shall prove

Theorem 1. *Let f(z) be a transcendental meromorphic function in the finite plane and k be a positive integer. Then we have*

$$
\sum_{a \in \mathbf{C}} \delta(a, f^{(k)}) \leq \frac{2k+2}{2k+1}.
$$

It is clear that for any positive integer k , we always have

$$
\frac{2k+2}{2k+1} < \frac{k^2+5k+4}{k^2+4k+2} < \frac{k+2}{k+1}
$$

and

$$
\frac{k^2+5k+4}{k^2+4k+2}-\frac{2k+2}{2k+1}>\frac{k+2}{k+1}-\frac{k^2+5k+4}{k^2+4k+2}.
$$

Although Theorem 1 gives a much better estimate for $\Sigma_{a\in\mathbb{C}} \delta(a, f^{(k)})$, it does not include $\delta(\infty, f^{(k)})$. For this reason, we prove another estimate.

Theorem 2. *Let f(z) be a transcendental meromorphic function of finite order in the finite plane and k be a positive integer. Then we have*

$$
\sum_{a \in \hat{C}} \delta(a, f^{(k)}) \leq 2 - \frac{2k(1 - \Theta(\infty, f))}{1 + k(1 - \Theta(\infty, f))}
$$

where $\Theta(\infty, f)$ *is the ramification index of* ∞ *with respect to f, defined by*

$$
\Theta(\infty, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)}.
$$

Finally we will prove a theorem on uniqueness.

2. A lemma

In order to prove Theorem 1, we need the following lemma which is a rewritten form of a lemma due to Frank and Weissenborn [4].

Lemma 1. *Suppose that f(z) is a transcendental meromorphic function. Given any positive number e, we have*

(1)
$$
N(r, \frac{1}{f^{(k+1)}}) > (k+1)\bar{N}(r, f) - N(r, f) - \varepsilon T(r, f^{(k)}) - S(r, f^{(k)}),
$$

where

$$
S(r, f^{(k)}) = O\{\log(rT(r, f^{(k)}))\},\
$$

except for r in a set with finite linear measure.

In fact, according to Frank and Weissenborn [4], we have

$$
k\bar{N}(r, f) < N\left(r, \frac{1}{f^{(k+1)}}\right) + (N(r, f) - \bar{N}(r, f)) + \frac{\varepsilon}{3} N\left(r, \frac{1}{f^{(k+1)}}\right) + \frac{\varepsilon}{3} \left(N(r, f) - \bar{N}(r, f)\right) + m\left(r, \frac{W}{(f^{(k+1)})^{l+1}}\right),
$$

where

$$
W(z) = W(1, z, z^2, \ldots, z^{k+l}, f(z), zf(z), \ldots, z^l f(z))
$$

denotes the Wronskian and l is a positive integer such that $l > 3(k + 1)/\varepsilon$. Noting

$$
N(r, \frac{1}{f^{(k+1)}}) \le T(r, f^{(k+1)}) + O(1)
$$

\n
$$
\le 2T(r, f^{(k)}) + m\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right) + O(1),
$$

\n
$$
N(r, f) \le T(r, f^{(k)})
$$

and

$$
\frac{W(z)}{(f^{(k+1)})^{l+1}} \equiv \frac{W(1, z, z^{2}, \dots, z^{k+l}) \cdot W(f^{(k+l+1)}, (zf)^{(k+l+1)}, \dots, (z^{l}f)^{(k+l+1)})}{(f^{(k+1)})^{l+1}}
$$
\n
$$
\equiv W(1, z, z^{2}, \dots, z^{k+l}) \cdot W\left(\frac{f^{(k+l+1)}}{f^{(k+1)}}, \frac{(zf)^{(k+l+1)}}{f^{(k+1)}}, \dots, \frac{(z^{l}f)^{(k+l+1)}}{f^{(k+l)}}\right),
$$

the inequality (1) follows immediately.

3. Case of two terms in Theorem 1

At first, we shall show [9]

(2)
$$
\delta(a_1, f^{(k)}) + \delta(a_2, f^{(k)}) \leq \frac{2k+2}{2k+1},
$$

where a_1 and a_2 are two finite distinct complex values.

We apply the Nevanlinna Second Fundamental Inequality to $f^{(k)}(z)$ and three complex values a_1 , a_2 and ∞ :

$$
T(r, f^{(k)}) < \bar{N}(r, f) + N\left(r, \frac{1}{f^{(k)} - a_1}\right) + N\left(r, \frac{1}{f^{(k)} - a_2}\right)
$$

(3)

$$
-N\left(r,\frac{1}{f^{(k+1)}}\right)+S(r,f^{(k)}).
$$

Substituting (1) in (3) and noting

$$
N(r, f^{(k)}) \ge N(r, f) + k\bar{N}(r, f),
$$

we obtain

(4)
$$
\bar{N}(r, f) < \frac{1}{2k} \left\{ N \left(r, \frac{1}{f^{(k)} - a_1} \right) + N \left(r, \frac{1}{f^{(k)} - a_2} \right) \right\} + \epsilon T(r, f^{(k)}) + S(r, f^{(k)}).
$$

Combining (3) and (4), we have

$$
T(r, f^{(k)}) \leq \left(1+\frac{1}{2k}\right)\left\{N\left(r, \frac{1}{f^{(k)}-a_1}\right)+N\left(r, \frac{1}{f^{(k)}-a_2}\right)\right\}+\varepsilon T(r, f^{(k)})+S(r, f^{(k)}).
$$

Thus

$$
\left(1+\frac{1}{2k}\right)\left\{\left(1-\frac{N(r, 1/(f^{(k)}-a_1))}{T(r, f^{(k)})}\right)+\left(1-\frac{N(r, 1/(f^{(k)}-a_2))}{T(r, f^{(k)})}\right)\right\}
$$

$$
<1+\frac{2}{2k}+\varepsilon+\frac{S(r, f^{(k)})}{T(r, f^{(k)})},
$$

so that

$$
\delta(a_1, f^{(k)})+\delta(a_2, f^{(k)})\leq \frac{2k+2}{2k+1}+\varepsilon.
$$

Since ε can be arbitrarily small, (2) is proved.

4. Proof of Theorem 1

If a_j (j = 1, 2, ..., q) are q distinct finite complex numbers, then we have

(5)
$$
\sum_{j=1}^{q} m\left(r, \frac{1}{f^{(k)}-a_j}\right) \leq m\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f^{(k)}).
$$

Denote by e the union of exceptional sets corresponding to inequalities (1) and (5). Then e has finite linear measure.

We consider two cases which are mutually exclusive.

$$
(1) \limsup_{\substack{r \to \infty \\ r \notin e}} \frac{\overline{N}(r, f)}{T(r, f^{(k)})} < \frac{1}{2k+1}
$$

In this case, we have

$$
\sum_{j=1}^{q} m\left(r, \frac{1}{f^{(k)} - a_j}\right) \le T(r, f^{(k+1)}) - N\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f^{(k)})
$$
\n
$$
\le T(r, f^{(k)}) + \tilde{N}(r, f) - N\left(r, \frac{1}{f^{(k+1)}}\right) + S(r, f^{(k)}).
$$

Thus

$$
\sum_{j=1}^{q} \delta(a_j, f^{(k)}) \leq \limsup_{\substack{r \to \infty \\ r \notin e}} \frac{T(r, f^{(k)}) + \bar{N}(r, f)}{T(r, f^{(k)})} \leq 1 + \frac{1}{2k + 1}.
$$
\n(2)
$$
\limsup_{\substack{r \to \infty \\ r \notin e}} \frac{\bar{N}(r, f)}{T(e, f^{(k)})} \geq \frac{1}{2k + 1}.
$$

Combining (1) and (6), we obtain

$$
\sum_{j=1}^{q} m\left(r, \frac{1}{f^{(k)} - a_j}\right) \le T(r, f^{(k)}) - k\bar{N}(r, f) + N(r, f) + \varepsilon T(r, f^{(k)}) + S(r, f^{(k)})
$$

$$
\le 2T(r, f^{(k)}) - 2k\bar{N}(r, f) + \varepsilon T(r, f^{(k)}) + S(r, f^{(k)}).
$$

Therefore

$$
\sum_{j=1}^{q} \delta(a_j, f^{(k)}) \leq \liminf_{\substack{r \to \infty \\ r \notin e}} \left\{ 2 - 2k \frac{\tilde{N}(r, f)}{T(r, f^{(k)})} \right\} + \varepsilon + \limsup_{\substack{r \to \infty \\ r \notin e}} \frac{S(r, f^{(k)})}{T(r, f^{(k)})}
$$

$$
\leq \frac{2k + 2}{2k + 1} + \varepsilon.
$$

Since ε can be arbitrarily small, we also have

$$
\sum_{j=1}^q \delta(a_j, f^{(k)}) \leq \frac{2k+2}{2k+1}.
$$

Because q can be arbitrarily large, the proof of Theorem 1 is complete.

5. Proof of Theorem 2 and corollaries

Similar to the case (2) of the Proof of Theorem 1, we have

$$
m(r, f^{(k)}) + \sum_{j=1}^{q} m\left(r, \frac{1}{f^{(k)} - a_j}\right)
$$

< 2T(r, f^{(k)}) - 2k\bar{N}(r, f) + \varepsilon T(r, f^{(k)}) + S(r, f^{(k)}).

Thus

$$
\delta(\infty, f^{(k)}) + \sum_{j=1}^{q} \delta(a_j, f^{(k)})
$$

\n
$$
\leq \liminf_{r \to \infty} \left\{ 2 - \frac{2k\bar{N}(r, f)}{T(r, f^{(k)})} + \varepsilon + \frac{S(r, f^{(k)})}{T(r, f^{(k)})} \right\}
$$

(7)

$$
\leq \liminf_{r \to \infty} \left\{ 2 - \frac{2k\bar{N}(r, f)}{T(r, f^{(k)})} \right\} + \limsup_{r \to \infty} \left\{ \varepsilon + \frac{S(r, f^{(k)})}{T(r, f^{(k)})} \right\}
$$

$$
\leq 2 - 2k \limsup_{r \to \infty} \frac{\bar{N}(r, f)}{T(r, f^{(k)})} + \varepsilon.
$$

Since

$$
\frac{\bar{N}(r,f)}{T(r,f^{(k)})}\geq \frac{\bar{N}(r,f)}{T(r,f)+k\bar{N}(r,f)+m(r,f^{(k)}/f)},
$$

we have

$$
\limsup_{r \to \infty} \frac{\bar{N}(r, f)}{T(r, f^{(k)})} \ge \limsup_{r \to \infty} \frac{\bar{N}(r, f)}{T(r, f) + k\bar{N}(r, f) + m(r, f^{(k)}/f)}
$$
\n
$$
\ge \frac{\limsup_{r \to \infty} \frac{\bar{N}(r, f)}{T(r, f)}}{\limsup_{r \to \infty} \left\{1 + k\frac{\bar{N}(r, f)}{T(r, f)} + \frac{m(r, f^{(k)}/f)}{T(r, f)}\right\}}
$$
\n
$$
= \frac{1 - \Theta(\infty, f)}{1 + k(1 - \Theta(\infty, f))}.
$$

Combining (7) and (8), let ε tend to zero and q tend to the infinity. We obtain finally

$$
\sum_{a \in \hat{C}} \delta(a, f^{(k)}) \leq 2 - \frac{2k(1 - \Theta(\in, f))}{1 + k(1 - \Theta(\infty, f))}.
$$

The following corollaries can be deduced from Theorem 2 immediately.

Corollary 1. *Suppose that f(z) is transcendental meromorphic and of finite order in the finite plane. If* $\Theta(\infty, f) < 1$, then we have

$$
\lim_{k\to\infty}\left\{\sum_{a\in\mathcal{C}}\delta(a,f^{(k)})\right\}=0.
$$

Corollary 2. *Let f(z) be transcendental meromorphic and of finite order. If* $\Theta(\infty, f) = 0$ (*i.e.* $\limsup_{r\to\infty}$ $(\bar{N}(r, f)/T(r, f)) = 1$), *then for any positive integer k, we have*

$$
\sum_{a \in \hat{C}} \delta(a, f^{(k)}) \leq \frac{2}{k+1}.
$$

Corollary 3. *Let f(z) be transcendental meromorphic and of finite order. If there exists a positive integer* k_0 *such that* $\Sigma_{a \in \hat{C}} \delta(a, f^{(k_0)}) = 2$ *, then we have* $\Theta(\infty, f) = 1$ (*i.e.* $\overline{N}(r, f) = o(T(r, f))$ as r tends to ∞).

6. Problem of uniqueness

Using a similar idea, we are going to prove a theorem on the problem of uniqueness. In order to do it, we prove a preliminary lemma.

Lemma 2. *Let f(z) be a transcendental meromorphic function in the plane and* a_i *(j = 1, 2, ..., q) be q (* \geq *2) finite distinct complex values; then we have*

$$
\left\{q-1-\frac{q-1}{kq+q-1}\right\}T(r, f^{(k)})
$$

(9)

$$
< \sum_{j=1}^q N\left(r,\frac{1}{f^{(k)}-a_j}\right)+\varepsilon T(r,f^{(k)})+S(r,f^{(k)}),
$$

where e is any small positive number.

Proof. Applying the Nevanlinna Second Fundamental Theorem to $f(z)$ and $q + 1$ complex values a_j $(j = 1, 2, ..., q)$ and ∞ , we have

$$
(q-1)T(r, f^{(k)}) < \bar{N}(r, f) + \sum_{j=1}^{q} N(r, \frac{1}{f^{(k)} - a_{j}})
$$

$$
- N(r, \frac{1}{f^{(k+1)}}) + S(r, f^{(k)}).
$$

Substituting **(1) in (10)** and noting

$$
T(r, f^{(k)}) \geq N(r, f) + k\bar{N}(r, f),
$$

we obtain

$$
\bar{N}(r, f) < \frac{1}{kq + q - 2} \sum_{j=1}^{q} N(r, \frac{1}{f^{(k)} - a_j}) + \varepsilon T(r, f^{(k)}) + S(r, f^{(k)}).
$$

Combining this inequality with (10), we deduce that

$$
(q-1)T(r, f^{(k)}) < \left(1 + \frac{1}{kq+q-2}\right) \sum_{j=1}^{q} N\left(r, \frac{1}{f^{(k)}-a_j}\right) - N\left(r, \frac{1}{f^{(k+1)}}\right) + \varepsilon T(r, f^{(k)}) + S(r, f^{(k)}).
$$

Dividing every term by $1 + 1/(kq + q - 2)$, we obtain the inequality (9).

Now, suppose that $f_1(z)$ and $f_2(z)$ are two transcendental meromorphic functions in the finite plane. Let a_i ($j = 1, 2, ..., q$) be $q \ge 4$) distinct finite complex values and k be a positive integer. We denote by $N_{1,2}^{(k)}(r, a_i)$ $(j = 1, 2, ..., q)$ the counting function with respect to all the non-common zeros of $f_1^{(k)}(z) - a_j$ and $f^{(k)}_2(z) - a_i$ in $|z| \le r$. Multiple zeros should be counted with their multiplicities. Under these notations, we have

Theorem 3. *If*

(11)
$$
\sum_{j=1}^{q} \left\{1-\limsup_{r\to\infty}\frac{N_{1,2}^{(k)}(r, a_j)}{T(r, f_1^{(k)})+T(r, f_2^{(k)})}\right\} > 3+\frac{q-1}{kq+q-1},
$$

then we have $f_1^{(k)}(z) \equiv f_2^{(k)}(z)$. *Therefore* $f_1(z) \equiv f_2(z) + P_{k-1}(z)$, *where* $P_{k-1}(z)$ *is a polynomial of degree* $k - 1$.

In fact, if $f_1^{(k)}$ is not identical to $f_2^{(k)}$, we apply Lemma 2 to f_1 and f_2 respectively and have

(10)

$$
\begin{aligned} \left\{ q - 1 - \frac{q - 1}{kq + q - 1} \right\} T(r, f)^{(k)} \\ &< \sum_{j=1}^{q} N \left(r, \frac{1}{f^{(k)}_j - a_j} \right) + \varepsilon T(r, f)^{(k)}_j + S(r, f)^{(k)}_j \quad (l = 1, 2). \end{aligned}
$$

Then we add these two inequalities and note

$$
\sum_{j=1}^q \left\{ N\left(r,\frac{1}{f_1^{(k)}-a_j}\right)+N\left(r,\frac{1}{f_2^{(k)}-a_j}\right) \right\} = \sum_{j=1}^q \left\{ N_{1,2}^{(k)}(r,a_j)+2N_0^{(k)}(r,a_j) \right\},\,
$$

where $N_0^{(k)}(r, a_i)$ ($j = 1, 2, ..., q$) denotes the counting function with respect to all the common zeros of $f^{(k)}_1(z) - a_j$ and $f^{(k)}_2(z) - a_j$ in $|z| \leq r$. Since $f^{(k)}_1$ is not identical to $f_2^{(k)}$, every common zero of $f_1^{(k)} - a_j$ and $f_2^{(k)} - a_j$ must be a pole of $1/(f^(k) - f^(k))$, so that

$$
\sum_{j=1}^{q} N_0^{(k)}(r, a_j) \le N \left(r, \frac{1}{f_1^{(k)} - f_2^{(k)}} \right)
$$

$$
\le T(r, f_1^{(k)}) + T(r, f_2^{(k)}) + O(1).
$$

Thus

$$
\begin{aligned} &\Big\{q-3-\frac{q-1}{kq+q-1}\Big\}\left(T(r,f_1^{(k)})+T(r,f_2^{(k)})\right) \\ &<\sum_{j=1}^q N_{1,2}^{(k)}(r,a_j)+\varepsilon(T(r,f_1^{(k)})+T(r,f_2^{(k)}))+O\{\log(rT(r,f_1^{(k)})T(r,f_2^{(k)}))\}, \end{aligned}
$$

except for r in a set with linear measure zero. This inequality yields that

$$
\sum_{j=1}^q \left\{1-\limsup_{r\to\infty}\frac{N_{1,2}^{(k)}(r,a_j)}{T(r,f_1^{(k)})+T(r,f_2^{(k)})}\right\}\leq 3+\frac{q-1}{kq+q-1},
$$

which contradicts (11). Therefore the proof of Theorem 3 is complete.

Remark. An interesting problem is whether the bounds of Theorem 1 and Theorem 2 are sharp or not.

ACKNOWLEDGEMENT

The author is very grateful to the Department of Mathematics, University **of** Notre Dame, especially to Prof. W. Stoll and Prof. Pit-Mann Wong for their hospitality. The results of this paper were presented in lectures at the University of Notre Dame and Purdue University in September and December of 1989.

296 LO YANG

REFERENCES

I. A. Baernstein, *Proof of Edrei's spread conjecture,* Proc. London Math. Soc. 26 (1973), 418-434.

2. D. Drasin and A. Weitsman, *Meromorphic functions with large sums of deficiencies*, Advances in Math. 15 (1974), 93-126.

3. A. Edrei, *Solution of the deficiency problem for functions of small lower order,* Proc. London Math. **Soc. 26** (1973), 435-445.

4. G. Frank and G. Weissenborn, *Rational deficient functions of meromorphic functions,* Bull. London Math. Soc. 18 (1986), 29-33.

5. W. K. Hayman, *Picard mlues of meromorphic functions and their derimtives,* Ann. Math. 70 (1959), 9-42.

6. W. K. Hayman, *Meromorphic Functions,* Oxford, 1975.

7. Mues, E., *Ober eine Defekt- und Verzweigungsrelation fur die Ableitung meromorpher Funktionen,* Manuscripta Math. 5 (1971), 275-297.

8. R. Nevanlinna, *Analytic Functions,* Springer, 1970.

9. L. Yang, *Precise coefftcients of Hayman's fundamental inequality,* preprint.

INSTITUTE OF MATHEMATICS

CHINESE ACADEMY OF SCIENCES BEIJING, CHINA

(Received January 14, 1990)