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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 308, Number 2, August 1988

 DEFICIENT VALUES AND ANGULAR DISTRIBUTION

 OF ENTIRE FUNCTIONS

 LO YANG

 ABSTRACT. Let f(z) be an entire function of positive and finite order H1.
 If f (z) has a finite number of Borel directions of order > ,s, then the sum of
 numbers of finite nonzero deficient values of f (z) and all its primitives does not

 exceed 21t. The proof is based on several lemmas and application of harmonic
 measure.

 1. Introduction. Let f(z) be an arbitrary entire function of finite and positive
 order A. A. Denjoy conjectured that f(z) has at most 2A distinct asymptotic values.
 L. Ahlfors succeeded in proving this conjecture later. He proved further that any

 entire function of finite lower order I, has 2,u asymptotic values at most [6, pp.
 303-307].

 Since there are some similarities between asymptotic values and deficient values
 of entire functions, one may expect that any entire function of finite order would
 have a finite number of deficient values. N. U. Arakelyan [1], however, constructed
 for the first time an entire function of order one having infinite deficient values.

 It is natural to ask: for an entire or meromorphic function of finite order A or
 finite lower order ,u, under what conditions does the number of its deficient values

 have an upper bound depending only on A or Iu? We ask for conditions which
 ensure that the number of deficient values of an entire function satisfy the bound
 of Ahlfors's theorem.

 One such condition is that entire or meromorphic functions have deficiency sum
 two. This is actually a part of F. Nevanlinna's conjecture. In the case of entire
 functions, cf. A. Pfluger [7], A. Edrei and W. Fuchs [4] proved several interest-
 ing theorems. Then A. Weitsman [10] obtained partial results for meromorphic
 functions and D. Drasin [2, 3] recently made a great contribution to prove F.
 Nevanlinna's conjecture completely. For entire functions, we also posed a similar
 condition [13]

 +So

 E: E 6 (a, f(i))=
 j=-oo a$0,oo

 and obtained the corresponding result.

 In this paper, another condition will be introduced.

 Let f(z) be an entire function of lower order ,u, where 0 < ,u < oo. A ray
 arg z = 0o (0 < 0o < 27r) is named a Borel direction of order > ,u of f (z), if for any
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 584 LO YANG

 positive number e, the inequality

 NM log n(r,0o-e0o+ ef= a) >
 r--+oo log r

 holds for any finite complex value a, with possibly one exceptional value, where
 n(r, 00 - e, 00 + e, f = a) denotes the number of zeros of f(z) - a in the region
 (Izl < r) n (oo - E < argz < 00 + e), multiple zeros being counted with their
 multiplicities.

 The aim of this paper is to prove the following theorem.

 THEOREM. Let f(z) be an entire function of lower order ,u, where 0 < u <
 +oo. If q < oo is the number of Borel directions of order > p, of f(z) and Pl
 (I = O,-1, -2, ...) denotes the number of finite nonzero deficient values of f (l) (z)

 (I = O, -1, -2. . .; f(0) -= f(z)),1 then we have , P, < 2,.

 2. A property of monotonic functions.

 2.1. We first establish a lemma on monotonic functions.

 LEMMA 1. Let f(z) be an entire function of finite lower order ,u, where 0 <
 ,u < +oo. If /1 and /32 are two arbitrary numbers with 1 < ol < /2, then there
 exists a sequence {tk} of positive numbers tending to infinity such that

 (2.1) lim log T(tk, f)
 k--+oo log tk

 and the inequalities

 (2.2) T(I31tk, f) < (/3t + O(l))T(tk, f)

 and

 (2.3) T(f32tk, f) < (O3l32P + o(l))T(tk, f)

 hold, when k tends to infinity.

 PROOF. Since the lower order of f(z) equals ,u, there is a sequence {rk} (k =
 2,3,... ) of positive numbers tending to infinity such that

 (2.4) (r 1-1/k)p-l/k 2< T(r 1-llk ,f) < T(rk, f) < r lk2

 and

 (2.5) log rk > k 3(,u + 2/k) log(0102).

 We shall prove the existence of a corresponding sequence {tk } which satisfies

 (2.6) tk e [r 1/k / rk], k = 1,2, 3, ...,

 (2.7) T(3ltk, f) < f31+2/kT(tk f)

 If(1)(z) (I < 0) is the primitive of order ItI of f(z).
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 DEFICIENT VALUES AND ANGULAR DISTRIBUTION OF ENTIRE FUNCTIONS 585

 and

 (2.8) T(f2tk, f) < (f102 2),+2/k T(tk, f),

 hence the conclusion of lemma.

 Let us now prove the existence of {tk} satisfying (2.6), (2.7) and (2.8). Denote

 E = {t: r1llk < t < rk, T(32t, f) > (/1 022)/+2/kT(t, f)},
 r1 = minE, rj = min{En[32rj1, rk]}, j 2,3,..., J + 1,

 where J is chosen so that rj+1 < rk < 02TJ+1. For every j (O < j < J) set further

 ej= {t: f1rj < t < rj+1,T(/1 t,f) ? f)+2/kT(t,f)}
 O3,1 = minej,

 j,j= min{ejn [fl j,-, ,rj+1]}, 1 = 2,3, ... Lj + 1,

 where ro = rk and j,Lj3+1 < rj+l < IlOj,Lj +1-
 By the above notations and (2.4), we have

 (r1-l/k),4_1k2 < T(rk 1/ll I,f) < T(uo,l If)

 < 0-(p+ 2/k) T (0 2i f ) < ***< 0- Lo (p+2/k)T(f0, L0o+1 if )

 < 0-Lo(p+21k)T(Tj, f) < -Lo(p+2/k)( 2- (p+2/k)(T,)
 < ...< f-(Lo+L1)(p+2/k) (I3/2)-2(p+2/k)T(/2r2, f)

 (p+2/k) EZo L= (flf32yJ(p+2/k)T(rk, f)

 -(4+2/k) Ej=o Lj llk2-(+2krk -O~~~+2/k) +2/)r7

 so that

 2 2 2 ~~~~~~~1 log rk (b+2)E Lj log 01 + J (/I+ 109lO(0102) < (8 + - k2 - k k k k2<(~+ -~ k
 Thus

 J

 Lj log f1 + (J + 1) log /1 + (J + 1) log/32
 j=O

 < 1 _ _ kl0g(_ 1_2) log rk < logrk
 | kV (A+ 2) logrk J k k

 by (2.5). Consequently

 dt dt ' rk dt

 jEt o Jrk

 i.e. there is a value tk not in the set E U (UJ=o ej)
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 586 LO YANG

 3. Several known results.

 3.1. In the sequel, we need several known results.

 LEMMA A [12]. Let f (z) be an entire function of lower order ,u, where 0 < , <

 +oo. If f(z) has no Borel direction of order > ,u in the angle 01 < argz < 02, then
 there exist two finite distinct complex values aj (j = 1, 2) such that for any number
 6, 0 < e < (02 - 01)/2, we have

 (3.1) - log{fE2= n(r, 01 + e, 02 - ,f = aj)}
 r-*+oo log r

 LEMMA B [12]. Let f (z) be an entire function of lower order ,u, where 0 < , <

 +oo. If the number of its Borel directions of order > ,u is finite and the minimum
 angular separation of the Borel directions is equal to w, then the order A of f (z)
 must be finite and ,u < A < 7r/w.

 LEMMA C [13, p. 468]. Let g(f) be meromorphic on 1j1 < R (< +oo). If

 IN = n(R, g = 0) + n(R, g = 1) + n(R, g = oo)

 and d (> 0) is the minimum distance from the origin to all the points of g(f) = 0,1
 or oo, then

 CRXTf RXT ? R? !? 2R~

 (3.2) T(r,g) < R-r log d +log+ R+log+ R + log R r
 + log+ 19(0)I

 for 0 < r < R, where C is a numerical constant.

 4. Property of functions having deficient values.
 4.1. We need more preparations to prove the main result formulated in the

 introduction.

 LEMMA 2. Let f(z) be an entire function of lower order ,u, where 0 < ,u < +oo.

 If f(z) has po (O < po < +oo) finite deficient values aj (j = 1, 2,... ,Po), f (-)(z)
 has p-1 (0 < p-1 < +oo) finite deficient values bl (I = 1, 2,.. ,p-) and

 6 = min {6(aj, f), 6(b1, f(-'))},
 1<j<po

 then there exists a sequence {Rk} of positive numbers such that

 (4.1) tk < Rk < 2tk,

 (4.2) mes Ekj =mes E{0: log If (RkeZ6) -aj < -(6/4)T(Rk, f)} > B

 (j= 1,2,...,po)
 and

 (4.3) mes Ekj' =mes Ef 0: log if ()(Rke6) -bil < -(5/4)T(Rk,f)}j> B
 (1= 1=2,...,p_1)

 where k is sufficiently large. The sequence {tk} is determined by Lemma 1 with

 01 = 8 and O2 = 4 104V (V will be given by (6.6)) and

 (4.4) B = B(6, , po, p- 1) =6 8(6 + log 40(po + p- )e}/ log 4)
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 DEFICIENT VALUES AND ANGULAR DISTRIBUTION OF ENTIRE FUNCTIONS 587

 PROOF. According to Lemma 1, there is a sequence {tk} satisfying

 lim log T(tk, f)
 k-*+oo log tk

 (4.6) T(8tk, f) < (8A + o(l))T(tk, f)

 and

 T(4 104V tk, f) < {(8 4 *104V)y + O(1)}T(tk, f).

 Let k be sufficiently large and fixed. In lzl < 3tk, denote by ajO (s = 1, 2,. . ,nj;
 nj = n(3tk, f = aj)) the zeros of f(z)-aj and by I1ju (u = 1, 2, ...,n(); n(1) -
 n(3tk, f(') - b1)) the zeros of f') (z) - b1. From the Boutroux-Cartan theorem
 [9], we have

 nJ

 (4.7) n l I- ajil > H nj (j = 11 2, .., po)
 8=1

 and

 n(-1)

 (4.8) 11 iz/-3ul > H n? (I=1,2, ... ,p-1)
 u=1

 except a set which can be enclosed in a finite number of disks with the sum of total

 radii not exceeding 2e(po + p- )H. The union of these disks is denoted by (y).
 Choose

 (4.9) H = tk/8e(po + p-1).

 There exists a positive number Rk such that

 Rk E [tk, 2tk], (Izl = Rk) n (,y) = 0.

 Since RkeiO ? (y) (0 < 0 < 2ir), (4.7), (4.9) and (4.6), we obtain

 (4.10)

 log 1 < 3tk +R (3tk 1)
 If(Rei) a I- 3tk -Rk - aj

 + n log (3tk )2 - aj,Rke2o
 l1 3tk(RkeiO - aj,)

 ?5m (3tk, 1) + nj (log 5tk + log)

 ?5m (3tk,f )+ N(4tkI f= aj) log{40(po + p1)e}
 f - aj ~ log 4

 < {5+ log{40(Po + P- )e} + o(1)} T(8tk, f)

 <8A + log{40(po + p-1)e} + o(l) T(tkf) log~ +4J\~
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 On the other hand, we have

 -T(Rk, f) < 1 | log If(Rke+) a11 dO

 2 27r |E if(Rke?)- dO+ -T(Rk,f). 2< IEk log+ a3d1 4 Rkf)

 Substituting (4.10) into this inequality, we obtain

 6 T(Rk f) < 1 log+ 1 dO?-
 4 27r Jk, if (Rke26) -aI a

 1 8{ 5 + log{40(po + p-1)e} +o(i) T(Rk,f)mesEkj-

 Therefore (4.2) is proved.

 Similarly we obtain

 log - {5 + log 40(po + p-1)e} + o(1)} T(4tk f(-l))
 if (- 1) ( keil) - bilog 4

 For sufficiently large r, from

 T(r, f (- 1)) < log M (r, f (- ))

 (4.11) < log{fif(-1) (0)I + rM(r, f)}
 < (3 + o(l))T(2r, f)

 and (4.6), we have

 T(4tk f ( 1)) < (3 + o(l))T(8tk, f) < (3 .8A + o(l))T(tk, f).

 Hence

 log 1< 38A '5+ log{ 40(po +p-1)e} + () N If(-')(RkeLo) - b<1 log{ 4(l)JT(t+ f1)
 The same procedure yields

 (4.12) oTp(Rk, f fp pT

 2w1 3 18A 5+ log{40(Po + o(l)j T(Rk,,f)mesEk7'.

 Since

 T(Rk i f ) < T(Rk i f(- 1)) + m(Rk i f/If(- ))
 and

 m(Rk, ) < 0(1)+4log+p+3log+ 1 +4log+T(p,f('1)
 f ~~~~p -Rk

 (Rk < P)

 we have

 log+ T(p, f (- 1)) < log+ {4T(8tk, f ) }

 < log+f4(8A + o(l))T(tk, f)} = O(logRk)
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 by choosing p = 4tk, (4.11), (4.6) and (4.5). Thus

 (4.13) (6/4 - o(1))T(Rk, f) < (6/4)T(Rk, f(1)).

 Comparing (4.12) with (4.13), we derive (4.3).
 REMARK. We may replace f(')(z) by f(')(z) (-1 > 1 > -L) and obtain a

 similar result.

 5. Properties of functions having no Borel directions in an angle.
 5.1. Now we shall establish a property of meromorphic functions without Borel

 directions in an angle.

 LEMMA 3. Let f (z) be an entire function of lower order ,u and order A, where
 0 < p, < A < +oo. Suppose that f(z) has no Borel direction of order > p, in the
 angle G: 01 < arg z < 02. If there are positive numbers 6 and B, a finite complex
 value aO and a positive and sufficiently large number2 Rk such that

 (5.1) mesE{0: 01 < 0 < 02,g10f(Rkei) -aoI < -(6/4)T(Rk, f)} > B,
 then for two positive numbers a and Q, 0 < a < 4(02 - 01), Q > 1, we have

 (5.2) log If (z) - aol < -CoT(Rk, f)

 and

 (5.3) log If W (z)I < -COT(Rk, f) + log{! (o ) } (j= 1,2,...)

 in the region

 (5.4) Jik: (104QRk < IZI < 104QRk) n (0l + a < argz < 02 - a),
 where

 00= ~~~6

 (5.5) 4{4(5 + 4 log h)}2Ni+N2
 N1 = [l]7r N2 = [20(i104Q 1)]

 and

 (5.6) h Ba h-8(2e +1)(1Oir +a)'
 PROOF. Choose positive number a < min(B/4, (02 - 01)/2). It is easy to see

 that

 mes {(: ?l + 4a < 47 < 02- 4a, log If (Rketi9)-aol <-jT(Rk, f) }>

 We divide G into N1 equal angles G, (v = 1, 2,... , Ni; N1 = [107r/al] + 1), so the
 opening of GC, does not exceed al/5. There is an angle G,0 such that

 6
 mes {: Rke'PEGvolloglf(RkeW?)-aol <--T(Rk,f)}

 1 ~ ~ ~~~~~~~~4)
 B aoB

 2N1 -2(107r +a)

 2In the late use of ?7, there is a sequence of positive numbers which tend to infinity and satisfy
 (5.1) for every k. For the abbreviation of notations, we consider only one sufficiently large number
 Rk here.
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 590 LO YANG

 Since f(z) has no Borel direction of order > ,u in G, two finite distinct complex

 values /1 (1 = 1, 2) and a positive number r < , can be found with

 2

 E n {r,01 + lo X02-l a if = 01 }< rr 10 10' <r

 by Lemma A, provided that r is sufficiently large.
 Write

 ni = En ((1+ a) Rki0l+ f X02 - O? Xf= 0
 (( 5 ) X1 101 10xf 0

 +n((1+ -a)Rki0l+f6 02 - if=ao)

 Then we construct some disks, having their centres at every zero of f(z) -o

 (1 = 1, 2) and of f(z) - aO in the region (Izl < (1 + 3al)Rk) n (0o + al/1o < argz <
 02 - a/10) and having the same radius ahRk/2(nl + 1), where h is given by (5.6).
 The union of these disks is denoted by (-y) .

 Let z1 be the point of intersection of lzl = Rk and the bisector of G,0 and let

 (5 7) Fk: IZ -.ziI < alRk/10.

 Denote by d8 (s = 1,2,... , n2) the zeros of f(z) - aO in Iz - Z21 < ' aRk, where
 Z2 is an arbitrary point in Fk \ (-y) . According to the Boutroux-Cartan theorem,
 we have

 iz l- d,I > (2 k
 except a set contained in several disks with the sum of radii not exceeding ehoaRk.
 Denote by (-Y)2 the union of these disks.

 Since the total sum of diameters of (9)) and (-Y)2 does not exceed

 oahRk + 2ehoaRk = Rk,
 8(107r + a)

 there is a point Z3 in Fk \ ((^Y)1 U (-Y)2) such that

 (5.8) log f (Z3) - aol < -(6/4)T(Rk, f)-

 Applying the Poisson-Jensen's formula [5], we have

 ____ /3 1 +3 (ceRk )2 -d,z3
 log < 1 5m 1aRk, Z2 i a+ Elogl 130a (z )| log Z) 1 ol< 10R f ao,~ -3 aRk (Z3 - dq)

 (5.9) Ifz)-o0
 < (5+ 4log h)T( aRk,Z2f- 1)

 where

 '32
 m -oaRk,z2,1/(f -ao)I and T 5aRk,Z2,1 (f-ao)

 denote

 m (jaRk, 1/(f(z + Z2) - ao)) and T (-aRk, 1/(f(Z + Z2) - ao))
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 DEFICIENT VALUES AND ANGULAR DISTRIBUTION OF ENTIRE FUNCTIONS 591

 respectively. Further Lemma C gives

 (5.10)

 T( o Rk, Z2 )

 ? T 2aRk, Z2, 1/(f - ao) 1/(fl1 - ao) - 1/(fl2 - ao)'~
 (5 1kZ2 1/(f-ao)-1/(2 - ao) 01 /O)- ao)

 + log | f (z)- _| + C

 < C (En (-cRk, Z2,f = )

 2 n(l( aRk, z2i f = /3i) + 1 i
 og E h/(n + t) + ogk +loglOj

 g If(z2)-aol
 where C is a numerical constant which need not be the same at each occurrence.

 In view of

 En - ceRk ,Z2, f = d) = 0(Rr)

 and n1 < RA+1, we obtain from (5.8), (5.9) and (5.10) that

 -T(Rk, f) < 2 (5 + 4log) log f(z2)-ao'

 i.e.

 I f (Z2) )-aol 16(5 + 4 log F )

 We rotate rk about the origin al/10 in succession. Then a chain Ir of 2N1 disks
 at most can be obtained to cover the region

 (Rk 20aRk< lzl < Rk + 20aRk) n (01+ 5a<argZ<0?2- 5a) 20 20 ,/ 5 5

 By the same procedure, we can prove that

 (5.11) If(z) -aol <exp (-4( 5 14i1g.A)}NlT (Rk if)
 (5 . 1 1 ) ( ~~~41{4 (5 + 4 log h)}2N)

 for any point z E (Fr \ (-y)') Since the total sum of diameters of disks in (-y), does
 not exceed oahRk < aRk/80, (5.11) holds without exception in the region

 (Rk- 1oaRk < lzi < Rk + 1 aRk) n (01 +3 40 < argz < 02- 40a)

 by the maximum modulus theorem.

 Let zo Rke'6o be an arbitrary point on

 (Izl = Rk) n (0o + 330 < argz < 02 - 330l)
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 592 LO YANG

 We make two concentric disks

 1 R
 |Z-zoI < -ce20Rk, IF: Iz -zoI < 20oR

 k 20zzo?-!R - 20 104Q
 where Q > 1 is mentioned in the lemma. With the centre of F'k on the segment

 L1: {reio Rk < r < (104Q + ) Rk},

 we move F'k along L1 by distance o&Rk/20 each time. Then L1 is covered by
 N2 = [(20. 104Q)/Ic] + 4 at most of these disks. Similarly, we move IF" by distance
 ceRk/(20 104Q) each time along

 L2: {(1/104Q - ce/(5* 104Q))Rk < r < Rk}

 and L2 is covered by at most N2 of these disks.
 Therefore we have (5.2) in the region

 { ( Q 4Q)Rk < IZI < (104Q +-) Rk}

 n + 9 Oe < argz < 02 - 10C
 10 -ag 1))

 hence (5.3) by the Cauchy inequality.
 5.2. We establish a corresponding lemma for the primitive.

 LEMMA 4. Let f (z) be an entire function of lower order ,u and order A, where
 0 < ,u < A < +oo. Suppose that f(z) has no Borel direction of order > ,u in the
 angle 01 < arg z < 02. If there are two positive numbers 6 and B, a finite complex
 value bo and a sufficiently large positive number Rk such that

 (5.12) mes E(j') = mes E{0: 01 < 0 < 02, log If (-1) (Rkei) -bol

 < -(6/4)T(Rk, f)} > B
 then we have in Dk defined by (5.4)

 (5.13) log If()(z) - bol < -(6/8)T(Rk, f ) < -CoT(Rk f),

 (5.14) log If (z)l < -(Co/2)T(Rk,f)
 and

 (5-15) co ~ f 20. 1O4Q j 1, . (51)log If (i)(z) I< -2 T(Rk, f) + 109il( ceRk)} =

 where Co is given by (5.5).

 PROOF. Write

 N = n(2Rk, f(') = bo) + n(2Rk, f = 0)

 and d = BRk/4N. Let (-y) be the union of disks, having centres at zeros of
 f(-1)(z)- bo and of f(z) in IzI < 2Rk and having the same radius d. Since
 the total sum of radii does not exceed Nd = BRk/4, we have

 (5.16) mesE, j' = mesE{0: 0 E Ek )Rk e"E(-)} > B/2.
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 When 0 e Ek 1), differentiation of the Poisson-Jensen formula gives k I

 io) ~ i 27r f (Rke~6 < 4. f log+ f ('2Rke~') - bo d~p
 f(- 1) (Rkei6) - bo - Rk 27r Jo

 - (2Rk)2

 Z.v 2R IRkeiO -i3vI

 where fv, are zeros of f+')(z) - bo in IzI < 2Rk. Thus

 log I f (Rk e"o) I < log I f ( - 1) (Rk e'o )-bo I

 + log+ m(2Rk, f(l) - bo) + log+ m (2Rk, f(-l) - b0)

 + + l og + log n(2Rkf() bo) + 51og2.

 Since the order of f(z) equals A, so does that of f(') (z). When Rk is sufficiently
 large, we have

 log+ m(2Rk,f(l) - bo) = O(log Rk),

 log+ m (2Rk, f(1l - bo) O (log Rk),

 log+ = O(logRk)

 and

 log+ nr(2Rk, f(') - bo) = O(log Rk).

 In view of these estimates and ,u > 0, we obtain

 (5.17) log If(Rke60)I < -(6/8)T(Rk, f)

 for 0 E E( 1) k

 Applying Lemma 3, it follows from (5.16) and (5.17) that

 log If (z)l < -(Co/2)T(Rk,f)

 and

 Co ~~~+l'j (20.- 104Q logIfU)J(z)l<- 2CT(Rk, f) og1. R 109

 in the region Dk defined by (5.4).

 When Oo E EJ41) and zo = RkeCoo, we have

 (5.18) If (-1) (z) -bol< If (-1) (zo) -bol +| f (5)d5|
 zoz

 for z E Dk. Thus (5.13) follows immediately from (5.12), (5.14) and (5.18).
 REMARK. Replacing f+')(z) by f(')(z), where 1 is a negative integer, we can

 obtain a similar lemma.
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 6. Estimation of harmonic measure.

 6.1. We need some estimates of harmonic measure.

 LEMMA 5. Let ae and Q be two numbers with 0 < al < 7r/6 and Q > 1. Putting

 D: (10-2QRk < IzI < 102QRk) n (0 - a < argz < 0 + 5ac)

 and

 F1: (10-2QRk < IzI < 1O2QRk) n (argz = 0 - a),

 then w(zo,FI;D) > 4 for any point zo on the arc (Izl = Rk) n (0-a < argz <
 0 + 2a).

 PROOF. Write

 F2: (10O2QRk < IzI < 1o2QRk) n(argz =0 + 5a),

 F3: (IzI = 1O-2QRk) n (0 - a < argz < 0 + 5ar)

 and

 F4: (IZI = 1O2QRk) n (0 - < arg z < 0 + 5a).

 It is clear that

 4

 (6.1) Ew (zo, Fj; D) = 1.
 j=1

 Further, denoting D1: 0- ae < arg z < 9 + 5ac and P: arg z = 0 + 5ac, we have

 W(zO, 2; D) < W(zo, F2; Di) ? w(zo, F; Di)

 (6.2) 00 - (O - a) <1

 (O + 5at) - (O - ae) - 2 '

 where 00 = arg zo. From this estimate of harmonic measure, we know that

 (6.3) w(zo, F3; D) < 4{1- (10-2QRk)/IzOI }2r/6a < 8

 and

 (6.4) w (zo, F4; D) <

 Substituting (6.2), (6.3) and (6.4) into (6.1), we derive the conclusion of Lemma 5.

 6.2. LEMMA 6. Let ae and Q be two numbers with 0 < al < 7r/12 and Q > 1.
 Denoting

 D: (10-4QRk < IZI < 104QRk) n (0 - a < argz < 0 + llac)

 and

 Fl: (10-4QRk < IZI < 104QRk) n (argz = 0 - a),

 we have w(zo, F1; D) > 4 for any point in the region

 (10O2QRk < IzI < 102QRk) n (0- a < argz < 0 + 5ar).
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 PROOF. In a similar way to the proof of Lemma 5, we write

 F2: (10O4QRk < IzI < 1O4QRk) n (argz=0 + llao),

 F3: (IzI = 10-4QRk) n (0 - a < arg z < 0 + lla),

 F4: (IzI = 1O4QRk) n (0 - a < argz < 0 + llo),
 D1: 0- al < argz <0+ lla

 and I": argz = 0 + 1lao. Thus we have

 w(zO F2; D) < w(zo, I"; Di) < w(ZO, F3; D) <
 and w(zo, F4; D) < 8 Lemma 6 follows from these estimates and the fact that 8

 i= 1w(zo,F I; D) = 1.
 6.3. Finally we give an estimation between the maximum modulus and charac-

 teristic function.

 LEMMA 7. Suppose that f (z) satisfies the assumptions of Lemma 2 with po +
 P-i > 1. Then a positive number V can be chosen sufficiently large such that

 (6.5) max{log M(10-4VRk, f), log M(10-4VRk, f(-'))}

 < 4 (CO/4)q+2 T(Rki A )

 where {Rk} is defined in Lemma 2, q denotes the number of Borel directions of f (z)

 and CO is given by (5.5).

 PROOF. When f (z) has a finite deficient value a1, according to a result of A.
 Weitsman [11], there is a positive number r = r(6(ai, f), 6(cx, f)) such that the
 inequality

 lim T(at, f) > T
 t-m0 T(t, f) -

 holds for any a > 1. When po = 0 and f(-1)(z) has a finite deficient value bl, then
 6(b ,f(-i)) < 6?(, f) and there is ri = ri(6(O,f),6(oo,f)) > 0 with

 i T(at, f) ) T

 li~m T(t, f) >-
 Setting r* = min(r, Ti), we have

 log M(10-4VRk, f) < 3T(2. 10-4VRk, f) < 4(2. 10-4V)TT(Rk, f).

 Since

 log M(r, f(-1)) < log If(i)(O)I + log 2r + log M(r, f)

 < O(log r) + 3T(2r, f),

 it is easy to see that

 log M(10-4VRk,f()) < O(log Rk) + 3T(2 10- 4VRk, f)

 < 4(2 10-4V ) T(Rk, f).

 Therefore, if we choose

 (6.6) V> 4log1 {(1 + 4* )log 2 + r* log C}
 then (6.5) follows immediately.
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 REMARK. In general, if L is a negative integer, we can establish a similar lemma
 to prove that

 max {logM(10-4VRk f(i))} < I (Co)? T(Rk, f)

 7. Proof of Theorem.

 7.1. Now we prove the theorem formulated in the introduction.

 When p < 2 the lower orders of f(l) (z) (I = 0, -1, -2,...) are all equal to ,u.
 Since an entire function of lower order less than or equal to 2 cannot possess any
 finite deficient value, the conclusion of the theorem is clear.

 When M > 2, we note first by Lemma B that the order A of f(z) must be finite,
 because the number of its Borel directions of order > M is finite. For simplicity of
 notation, we only prove po + p-1 < 2p. The same procedure can derive the general
 conclusion EZ ' Pi < 2p.

 Suppose that 1 < po < +x and 1 < P-1 < +oo. Let aj (j = 1,2,... ,po) be
 the deficient values of f(z) with deficiencies 6(aj, f), bl (1 = 1,2,... ,P2i) be the
 deficient values of f(- )(z) with deficiencies 6(bl, f(- 1)) and

 6 = min J6(a3-,f), 6(bi, f(-1))j.
 1<3?<Po

 From Lemma 2, there are two sequences {tk} and {Rk} such that

 tk < Rk < 2tk, lim log T , ='
 k --~+cx log19tk

 mes E{O: log If(Rkei) -a31 < -(6/4)T(Rk, f)} > B, j = 1,2, , POl
 and

 mes E{0: log If- (Rke"6) - bi ? <-(6/4)T(Rk, f)} > B, 1 = 1,2, ... P-

 where B = B(6, p, po, p- 1) > 0 is determined by (4.4).
 Denote by arg z = 0, (v = 1, 2,. .., q, O?< < 02 < < Oq < 27r) the q Borel

 directions of order > ,i of f(z) which divide the plane into q sectors. Let

 w= min (0v+i-Ov), 0q+1=27r+01.

 Choose a fixed integer k, sufficiently large, so that corresponding to a1 there is an

 angle, say 0,, < argz < 0, + 1, such that

 mes E{0: 0,, < 0 < 0, +1, logIf (Rke )a, I < -(614)T(Rki f)j > Blq.
 Hereinafter we denote by A(rj,r2;sc01,sc02) the region (r, < Izl < r2) n

 (Ypj < argz < P02) and A(rj,r2;p01, 02) its closure.
 With two positive numbers ai < min(K/4q, w/24) and Q > 1 chosen, applying

 Lemma 3 to f(z) and a1 yields that

 (7.1) log If (z) -al < -CoT(Rk, f)

 in the region A(10-4QRk, 104QRk; O, + a, 1 + - a), where Co is given by (5.5).
 Similarly, corresponding to a2 there is an angle, say OL,2 < arg z < 0L2+1, such

 that

 mesE{O: 0,2 < 0 < ,2,+1,logIf(RkeZO) -a21 < -(6/4)T(Rk,f)} > B/q.
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 Hence the inequality

 (7.2) log If (z) - a21 < -COT(Rk, f)

 holds in the region A(10-4QRk, 104QRk; 0L2 + a,' 02+1 - a). It is easy to see that
 the angles 0,1 < argz < O,1+i and OV2 < argz < 9v2+1 have no common point.
 By this procedure, there are po + P-i angles, one corresponding to each of aj

 and bl, Ov,, < argz < Ov,+i,

 0 < OV1 < OVi+i < ?V2 < OV2+1 < ?.. < 0VP+P- +1 <01 + 2,

 and in every angle On < argz < v n+1, one an only one among the inequalities

 (7.3) log If(z) - ajI < -CoT(Rk, f), j= 1,2,... ,po,
 and

 (7.4) log lf(-)(z) - bil < -CoT(Rk,f), = 1,2, ...P-1

 holds uniformly in the region A(1O-4QRk, 104QRk; 0Vn + al, On+l - a).
 7.2. For two angles Ov < argz < Ov +i and OV2 < argz < OV2+1 corresponding

 to a1 and a2 respectively, we conclude that there is a point z1, satisfying the

 condition log If (zi) -a 1 > 0 in the region A(10-2QRk, 102QRk; 0V1+1-a,' V2 +5al).
 In fact, if this assertion were not true, then the inequality

 (7.5) loglf(z)-a,l <0

 would hold uniformly in A(10-2QRk, 102QRk; Ov + 1 - a', 02 + 5ca). Let

 Dkl: A(10-2QRk, 102QRk; Ovi +1 - ae, Ov, +1 + 5a),

 rl: (1O-2QRk < lZI < 1O2QRk) n (arg z = Ov, +1 - O)

 and Cr1 be the rest of the boundary of Dkl. For an arbitrary point zo on the arc

 (Izl = Rk) n (0vl+i - Ol < argz < 0v1+j + 2a), we obtain

 log If(zo) -a I < w(zo,F I; Dkl) max log If(z) -a I

 +{1-w(zo,Fl;Dkl)} max log If(z) -a,
 zEcri

 < -(Co/4)T(Rk, f),

 by noting (7.1) on F1, (7.5) and w(zo,Fl;Dkl) > from Lemma 5. Thus

 mesE{0: O,I+ < 0 < 0,+2,1logIf(Rk e)-aol < -(Co/4)T(Rk,f)} > 2ce.

 Applying Lemma 3 to f(z), a1 and the angle Ov + < argz < Ovi+2 which is the
 neighbor angle of Ovi < argz < Ov,+ , we get

 log If(z) - al < -(CO2/4)T(Rk, f)

 in A(10-4QRk, 104QRk; Ov, +1 + a, Ovi +2 - av)-
 By the same deduction, we have

 log If(z) -al < -(Co/4)2T(Rk, f)

 on (Izl = Rk) n (0v,+2 - a < argz < Ovi+2 + 2a) and

 log If (z) -al < -(Co/4)2COT(Rk, f)
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 in A(10-4QRk, 1Q4QRk; Ovj+2 + al, 0v+3 - a).
 Applying this procedure in succession throughV2 - vl (< q) times, we obtain

 finally

 log If (z) - a,l < -(Co/4)V2-V1CoT(Rk, f)
 (7.6) < -(CO/4)qCoT(Rk, f)
 in 41(10-4QRk, 104QRk; 0U2 + a, OV2+1 - a). It is clear that the inequality (7.6)
 contradicts (7.2).

 From the above procedure, we know that a point z1 in the region

 A(10 2QRk, 102QRk; Ovi+hi -,e 0v+hi + 5a) (1 < hi< V2- Vl)
 can be found such that

 (7.7) log If(zi) - a,I > 0

 and that in the region A(10-2QRk, 102QRk; 0vj1+l -a, 0vi+hi -c) log If (z) -al I < 0
 holds uniformly. Thus we have

 (7.8) log If (z) - al < -Co (Co/4)h 1 T(Rk, f)

 on the segment F: (10-4QRk < IZI < 104QRk) n (argz = 0vi+hi - a).
 7.3. Further, there exists a point z4 on the closure of

 DI,: A(10-4QRk, 104QRk; Ovi+hi - aOvi+hi + la)
 such that

 (7.9) log If (zC) I > (Co/4)q+2T(Rk, f),
 where q is the number of Borel directions of order > ,u.

 In fact, let

 (7.10) If(zr)-a,l = max If (z)-aiI,
 zEDkl

 and denote by crJ the complement of r1 with respect to the boundary of D.
 We obtain from (7.7), (7.8), (7.10) and Lemma 6 that

 0< log If (zi) -all < w(zi, r,4D') logM(m f -a,)
 + 1 - w(zi,r r, DI 1)1 iog m(cr,, f - a,)

 < 4{-CO(CO/4)h1T(Rk, f)} + logIf(z))-all.

 Therefore the inequality (7.9) follows immediately.

 If the angle 0v3 < arg z < 0v3+1 corresponds to f(1) (z) and the deficient
 value b1, then we have by Lemma 4 that log If(-1)(z) - bil < -COT(Rk,f) and
 log If (z)l < -(Co/2)T(Rk, f) in the region A(10-4QRk, 104QRk; 0U3 +a, 0V3+ 1-a).
 By the same deduction, we obtain a point z* in

 A(10 4QRk, 104QRk; 9V2+h2 - a, 0V2+h2 + lla) (1 < h2 < V3 - V2)

 with log If (z2)l > (Co/4)q+2T(Rki fA)
 If the angle 0v4 < argz < 0v4+1 corresponds to f(1) (z) and the deficient value

 b2, then we also obtain a point z* in

 A(10 4QRk, 104QRk; 0V3+h3 - , 0V3+h3 + lla) (1 < h3 < V4 - V3)

 with log If (- 1) (z*) I > (Co/4)q+2T(Rk, fA)
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 In general, there is a point Zn* in

 A;(104QRk, 104 Rk, Ovn+hn -C Ov, 0+hn + 1 aC) (1 < hn < Vn+l - Vn)

 satisfying either

 (7.11) log If(z*)l > (CO/4)q+2T(Rk,f)

 or

 (7.12) log If(-1) (zn) I > (Co/4)q+2T(Rk, f).

 7.4. If Co is given by (5.5), we can find a number CO such that

 (7.13) 4 (CO/4)q+2 < CIo < 2 (CO/4)q+2
 and that f'(z) has no zero on the level curves If(z)I = COT(Rk, f) which are thus
 analytic.

 Consider the set

 (7.14) Q: {z: log If (z)I > COT(Rk,f), Z I< 104VRk},

 where V is given by (6.6). Let Oki be a component of Q which contains the point
 zr. It is clear from Lemma 7, (7.1) and (7.3) that Qkl does not meet IZI = 10-4VRk,
 argz = 0v1+j - ce and argz = aL2 + a!. But Qikl n (Izl = 104VRk) contains at least
 one arc by the maximum modulus theorem.

 Let rPk1(r) be the linear measure of Oki n (Izl = r) and let rki be ilk, n (Izl =
 104VRk) and crkl be the complement of rkl with respect to the boundary of Qkl
 When 1z41 < r < 104VRk, we have

 logf(z4)I < {1-w(z*,rk1;2Qk1)} max logIf(z)I

 + w(z*, rkl; Qkl) max log If (z) I
 1 ~~Zerkl

 In view of (7.9), (7.13), (7.14) and an estimation [8, p. 116] of harmonic measure,
 we obtain

 (CQ/4)q+2T(Rk, f) < log If(z4)l < 2 (Co/4)q+2T(Rk, f)

 +loIM(iA4VDk, f)9V' exp {f-if R 2 dr
 + log M104L L, ~ 2zI k()

 Thus

 104VRk/2 dr

 (7.15) 2 .104QRk r(pkl(r) < logT(2. 1o4VRk,f
 - log T(Rk, f ) + log{54X2(4/Co)q+2}.

 In the general case, if (7.11) holds, then there is a component Qkn of Q which
 contains the point zn and does not meet IzI = 10-4VRk, argz = Ov+l- ac and
 arg z = i>+i + ca. Let r Pkn (r) be the linear measure of Qkn ln (IzI = r). Then we
 have the same inequality (7.15) with Pkn(r) (n = 1, 2,... , ni).

 Similarly, there is CogT(Rk, f) in
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 such that f(z) has no zero on the level curves If(f)(z)I = CogT(Rk, f) which are
 thus analytic.

 Consider the set

 Q': I{z: log I f -(z) I > Co"T(Rk, f ), I Z I< 1?4VRk}-

 If (7.12) holds, let Q?2 be a component of Q' which contains the point zn. We can
 see that Qkn does not meet Izj = 10-4VRk, argz = 01n+1-a and argz = Olnl+ a.
 Let rePon(r) be the linear measure of (Izl = r) n ?2 . Then, if IznI < r < 104VRk,
 we have

 (C0/4)q+2T(R , f(1)) <log 10f (Zn )I < - (Co/4)q+2T(Rki f (-1))

 +log M(104VRk, f(1)) . 9V'-exp -7r k/ r }

 Since

 log M(104VRk, f(-1)) < log M(104VRk, f) + O(log 104VRk)

 < 4T(2. 104VRk, f)

 and

 T(Rk, f) < T(Rk, f(1)) + m (Rk, f(1))

 = T(Rk, f(1)) + O(logRk) < 4 T(Rk, f( 1)),
 this yields that

 I1O4V Rk/2 dr
 OR * < log T(2. 104VRk, f)

 2 104Q Rk r(kn (r)

 (7.16) {44/ q+2 (7.16) _~~~~~ log T (Rk, f ) + 109 144 (C2 )C }

 n=1,2,... ,n2.

 Therefore we obtain finally nr components Qkn (n = 1, 2, ... , n1) of Q and n2
 components Qkn (n = 1,2,... , n2) of Q' and the corresponding inequalities (7.15)
 with Pkn(r) and (7.16). It is very important to note that ni + n2 = Po + P-1 and
 that any one of Qkn (n = 1, 2,...,nj) and Qlkn (n = 1,2,...,fn2) is distant from
 all others. Thus

 nli n2

 E Pkn (r) + E Pkn(r) < 27r,
 n=1 n=1

 so that

 (Po + P_1 )2= {E (Pkn (r) ) /2 ( (r))1/2 + 1)2
 n Il n2 n } { I n2 1 }

 < 1: P kn(r + 1: PRk*n(r E Pkn (r) + : ?P*n (r)
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 Consequently, we have

 (po +p1)2 f; V1k:2
 2 2.104Q Rk r

 ni l04VRk/2 dr n2 104VRk/2 dr ?Li r]d + >2w]r
 n=1 2104QRk r(Pkn(r) n=1 2104QRk rpkn(r)

 ? (po + p_1){logT(2 o104VRk, f)- log T(Rk, f)}

 + (Po + P- 1) log{ 144X/2(4/Co)q+2}
 But

 tk < Rk < 2tk, T(4. 104Vtk, f) < {(8 . 4. 104V)y. + o(1)}T(tk, f)

 and T(Rk, f) > T(t k, f) by Lemnma 2 and Lemma 1 with 31 = 8, f2 = 4. 104V and
 therefore we obtain

 104V / +
 (Po + P- 1 ) log - 10Q < 2 log(33 104V)/p + 2 log 144 C)

 Letting V -+ +oo, we have po + p-, < 2.
 If po or p-1 equals +oo, then we can choose pO deficient values of f(z) and p'1

 deficient values of f(-')(z) such that pl + P_1 = [2pu] + 1. The same procedure,
 however, leads to pO + p' 1 < 2,. This contradiction shows that both po and p-,
 must be finite. When po = 0 or P-I = 0, the above deduiction is also effective.
 Thus the proof of the theorem is complete.
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