纪念冯康先生

辛几何算法

  1984年,冯康首次提出基于辛几何计算哈密顿体系的方法,即哈密顿体系的保结构算法,开创了哈密顿体系计算方法新领域。新的算法解决了动力学长期预测计算方法问题,促进了天体轨道、高能加速器、分子动力学等领域计算的革新。 

  • 1. On difference schemes and symplectic geometry

  • 2. Difference schemes for Hamiltonian formalism and symplectic geometry

  • 3. Symplectic geometry and numerical methods in fluid dynamics 

  • 4. Canonical difference schemes for Hamiltonian canonical differential equations  

  • 5. The symplectic methods for the computation of Hamiltonian equations  

  • 6. On the approximation of linear Hamiltonian systems

  • 7. Construction of canonical difference schemes for Hamiltonian formalism via generating functions 

  • 8. Symplectic difference schemes for linear Hamiltonian canonical systems 

  • 9. Hamiltonian algorithms for Hamiltonian dynamical systems 

  • 10. The Hamiltonian way for computing Hamiltonian dynamics 

  • 11. Hamiltonian algorithms and a comparative numerical study 

  • 12. A note on conservation laws of symplectic difference schemes for Hamiltonian systems 

  • 13. Symplectic difference schemes for Hamiltonian systems in general symplectic structure 

  • 14. How to compute properly Newton's equation of motion ? 

  • 15. Formal power series and numerical algorithms for dynamical systems 

  • 16. Symplectic, contact and volume-preserving algorithms 

  • 17. Formal dynamical systems and numerical algorithms 

  • 18. Dynamical systems and geometric construction of algorithms 

  • 19. Variations on a theme by Euler 

  • 20. The step-transition operators for multi-step methods of ode's 

  • 21. The calculus of generating functions and the formal energy for Hamiltonian algorithms


附件下载: