辛几何算法
1984年,冯康首次提出基于辛几何计算哈密顿体系的方法,即哈密顿体系的保结构算法,开创了哈密顿体系计算方法新领域。新的算法解决了动力学长期预测计算方法问题,促进了天体轨道、高能加速器、分子动力学等领域计算的革新。
1. On difference schemes and symplectic geometry
2. Difference schemes for Hamiltonian formalism and symplectic geometry
3. Symplectic geometry and numerical methods in fluid dynamics
4. Canonical difference schemes for Hamiltonian canonical differential equations
5. The symplectic methods for the computation of Hamiltonian equations
6. On the approximation of linear Hamiltonian systems
7. Construction of canonical difference schemes for Hamiltonian formalism via generating functions
8. Symplectic difference schemes for linear Hamiltonian canonical systems
9. Hamiltonian algorithms for Hamiltonian dynamical systems
10. The Hamiltonian way for computing Hamiltonian dynamics
11. Hamiltonian algorithms and a comparative numerical study
12. A note on conservation laws of symplectic difference schemes for Hamiltonian systems
13. Symplectic difference schemes for Hamiltonian systems in general symplectic structure
14. How to compute properly Newton's equation of motion ?
15. Formal power series and numerical algorithms for dynamical systems
16. Symplectic, contact and volume-preserving algorithms
17. Formal dynamical systems and numerical algorithms
18. Dynamical systems and geometric construction of algorithms
19. Variations on a theme by Euler
20. The step-transition operators for multi-step methods of ode's
21. The calculus of generating functions and the formal energy for Hamiltonian algorithms
附件下载: