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Abstract

This paper contains the existence of four solutions of Schrédinger equations with jumping nonlinearities.
The proof procedure is supported by a lot of new results. Initially, a consequence is rendered as a minimax
principle on H 1 (RN ), which allows us to achieve the feasibility verification of the (PS) condition. Fur-
thermore, the constructions of minimal and maximal curves of Fuc¢ik spectrum in Q; (see the introduction
for the definition of Q;) warrant an intensive investigation. That we encounter some thorny problems is
largely due to the absence of compact embedding and the appearance of essential spectrum. Based on a
nontrivial argument, we can compute critical groups of homogeneous functional at zero if (a, b) is free of
Fucik spectrum and (a, b) € Q;. This together with convexity and concavity offers a detailed description of
the two curves by a series of sophisticated tricks. Additionally, we present a new version of Morse theory

in view of the fact that classical version doesn’t work directly for weak smooth functional on H 1 (RN )

Finally, we prove a weak maximum principle for RY, which serves as a tool to get a critical point in positive
and negative cone respectively and also compute critical groups of critical points of mountain pass type.
With the help of above preparations, we attain the ultimate aim by Morse inequalities and various exact
homology sequences.
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1. Introduction

This paper is mainly concerned with nonlinear Schrédinger equation:

{—Au+V(X)M=f(X,M)» x eRY, (1.1)

u(x)—0, as |x| — +o0,

arising from study of standing wave solutions of time-dependent nonlinear Schrodinger equa-
tions. The corresponding energetic functional of (1.1) is of the form as:

J(u):](u,a,b):%f(IVuI2+V(x)u2)dx—/F(x,u),

RN RN

where F (x,u) = fou f (x,s)ds, f (x,u) is a Carathéodory function on R x R such that

(1.2)

fx, 1) a,ast — —o0,
—
t b,ast — 400,
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(a,b) ¢ Z(—A+V), and ¥ (—A+ V) is called Fu¢ik spectrum, defined as the set of all
(a,b) € R? such that

—Au+Vx)u=au~ +bu't, xeRY,

(1.3)

u(x)—0, as |x| »> 400,

has a nontrivial solution u in the form domain of —A + V, where u™ = max{u,0}, u~ =
min {u, 0}, and the form domain of —A + V is the Hilbert space H' (R") equipped with the
norm

[SE

ull = /|W|2+/|u|2

RN RN

and the inner product

(u,v):/Vqu—G—MU.
RN

From the variational point of view, the solutions of (1.3) are the critical points of the following
energetic functional

1
1<u)=1(u,a,b)=5/|W|2+V(x)u2—a|u*|2—b|u+

RN

z,ueHl(RN).

Throughout the paper, we always assume that the linear potential V is real-valued, and V =
Vi+ Vo, Vi € LP (RY), V, € L® (RY), with p=2if N <3, p>2if N=4and p > J if
N >5.

The Fucik spectrum was originally introduced in the 1970s by Fucik [11] and Dancer [10],
and defined on a smooth bounded domain Q C RY. Denote by A1 < Ay < A3 < --- the distinct
eigenvalues of —A with Dirichlet boundary condition. It is then clear that (1;, ;) € £ (—A) for
any/ e Nand ({A1} x R)UR x {11}) C X (—A). Put O; = (M—1, A1+1)2 for I > 2. Schechter
in [35], [38] constructed two decreasing curves Cjj, Cj» (which may coincide) in Q; passing
through (A;, A7) such that all points on the curves are in ¥ (—A), while points in Q; that are
above both curves or below both curves are not in X (—A). When the curves do not coincide, the
region between them is called a type (II) region, which may or may not intersect X (—A) (see
also [34] and [37]).

Concerning the Fu¢ik spectrum for Schrodinger operator on R¥, to the best of our knowledge,
so far the unique work appeared on [5], in which the authors gave a full characterization of the
first nontrivial curve for certain types of potential by minimax methods.

Deeply attracted by the constructions of Fucik spectrum curves emanating from (A, 1), A €
odis (—A 4 V), in this paper we are devoted to making a complete description of C;1, Cj3 in
Q; for the case Aj_1, A, Ai+1 € 0dis (A + V), M1 < A < Mj41 < infoegs (—A+ V), [ > 3.
However, it seems that we can not expect to achieve the target merely by a simple extension of
[35] and [38] since the main difficulty, to a great extent, has arisen from the absence of compact
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embedding and the appearance of essential spectrum. For this reason, we introduce a largely
different measure, which does the trick (see Sections 4 and 5 for more details).

Another challenge comes from validation of compactness condition. In [25], the authors
dealt with both nonresonant and resonant case for J (see also [25] for the argument on
more general functional). However, for (a,b) ¢ £ (—A + V) and a # b, they verified that J
satisfies the (PS) condition with a strong hypothesis [I" (a,b), A (a,b)]No (—A+V) =D,
I (a,b) :=min{a, b}, A (a, b) := max {a, b}. In comparison with [25], for (a,b) ¢ T (—A+ V)
and a # b, under some certain hypotheses we derive identical result for J when admitting
(' (a,b), A(a,b)) Nogis (—A + V) # &, and a minimax principle on H' (RN) (see Section 2)
plays a crucial role in the process of proof. Due to the length limitation of this paper, we do not
intend to make a discussion on the resonant case.

Let V be a Kato—Rellich potential (see Definition 2.1) and suppose A1 = info (—A+ V) <
Ay << XA < M4l <o0p:=infoes (—A+ V), ogis (A + V)N [)»1, )\H-l] = {ki}éii, [>2.
Denote

Qf = [(a,b) eR?: ) =T (a,b) < Al(a,b) <O =F(Md,+1+1,00)};

V=@ b e 0l b= (@)}:
2 i={@b) e Qfyy 1b=Fs @),

where 1tj =1t (—A + V) (see Proposition 2.8), dj41 is the sum of multiplicity of Ay, -+, Ay,
and make the following hypotheses:
(V) V (x) is areal potential, s.t.,

inf V(x)> —o0.
x€RN

(V3) VeCN=22(RN)if N>3and Ve C' (RV)if N=1,2,0<a <1;

(Va) My =info (A + V) <Ay <+ <X <00, 0dis (A + V)N [A1,00) = (A} s

(f1) Set f (x,s) =as™ +bst+g(x,s), g (x,0) =0, ‘ }im 805) — ( uniformly with respect
S|—> 00

tox € RV, s.t., 38 > 0, such that Vsj, s, € R, Vx e RV,

lg (x,51) — g (x,52)] < Bls1 — 52l

and 8 < o9 — A (a, b), where A (a, b) = max {a, b}.

(f3) Let f(x,s) =ags™ +bosT +2 (x,5), lir(r)1 @ =ay, lirg @ = b, uniformly on
s—>0_ s—>04

x €RY, and g (x,s5) e CV72* (RN x R,R) if N >3, and g (x,s) € C' (RN xR, R) if N =
1,2;

(f) ke <T(a,b) < A(@,b) < 1 =T (s +1,00), 1 > k= 3;

(f5) A (ao, bo) <A1

(fe) fv/ (x,5) > @ >—m,Vs#0,a.e.onx € RY, where m is given by Section 3.

The hypothesis (f1) is due to Section 3 (see p. 7014). The hypothesis (V») is offered by
Section 5.1 (see p. 7027). The definitions of QZH, Vk (@), ka1 (@) are presented by Section 5.2
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(see p. 7042, p. 7048 and p. 7058 respectively). As to the hypotheses (V3), (Va), (f3), (f1), (f5),
(f6), please refer to Section 7 (see p. 7069).

With the aid of the above mentioned hypotheses, our main result concerning the existence of
four nontrivial solutions of (1.1) reads:

Theorem 1.1. Let V be a Kato—Rellich potential. Suppose that (V2)—(Va), (f1), (f3)—(fs) hold.
Let (a,b) € QZH, if (a, b) is below C,gl or above C/gp then (1.1) admits at least four non-
trivial solutions, including a positive solution ui, a negative solution uy and a sign-changing

solution. Moreover, if uy, uy are isolated solutions, then we have Cy (J,u;) =6,1G,i =1, 2.

Remark 1.2. Let V be a Kato-Rellich potential. In the case f (x,7) € C! (RY x R, R), we just
need to assume that (f1) and (fg) hold, and ag = by < A <Ay < --- <A <a=b< 51 =
r (Mdl-s-l, 00), odis (A + V)N [A, ] = {)\i}§=17 [ > 2, then (1.1) has at least four nontrivial
solutions. It is new for (1.1) even in this case.

There are some literatures concerning the study of multiplicity of solutions for (1.1) (see [4],
[25], [27], and references therein). In the journey of finding three solutions, we distinguish two
solutions by their signs, and hence get a positive solution #1, a negative solution u;. In [26],
the authors obtained a solution other than #; and u», denoted by u3. The sign change of u3 was
also verified by [26]. These are not yet enough to guarantee the existence of the fourth nontrivial
solution. It clearly emerges that aiming at four-solution task, we have to resort to Morse the-
ory and distinguish critical points by their critical groups. Further analysis earnestly anticipates
an elaborate description for local behavior of each critical point. Note that linking methods via
homotopy minimax principle just furnish the information on homotopy groups, so it is indispens-
able for us to initiate an argument attacking above problem by computing critical groups, and the
method is largely different from [8] and [24]. Notice that (1.1) possesses a jumping nonlinear
term f (x,) at 0 and accordingly J ¢ C* (H' (R"), R), so Morse theory of weak smooth func-
tionals on H'! (RN ) is urgently desired. Corresponding splitting theorem and shifting theorem
for a bounded domain €  R" had been well established in [20] (see also [21] for more general
case) and we will give a brief introduction for such contents in Section 7.

The proof of four solutions theorem is arranged in Section 8. We would like to state here
some preparation work adapted to our needs. We obtain three critical points of J on H' (]RN )
and supply precise information on critical groups. Moreover, in Section 8 we build up a weak
maximum principle for RV . Employing such maximum principle and also by Brezis—Martin the-
orem (see [6] and [28]), we verify that the positive and negative cone of Hilbert space H,}, (RN ),
denoted by 4P and — P respectively, are invariant sets under the negative gradient flow of J on
H) (RV), and we also show that ((+P)° NN) N ((—P)’ NN) = & for § > 0 suitably small,

(£P)® = {u € H) (RY): il}_pr lu —vll,, < 8}. Concerning the definitions of H, (RV) and
ve

-1, , the readers may consult Section 3 for details. Moreover, 7 (¢, u) C ((:I:P)‘s)o asu € (:I:P)‘S,
for Vt € (0, 400), where ((—}—P)‘S)O and ((—P)‘S)O denote the interior of (+P)® and (—P)® re-
spectively, and 7 is the negative gradient flow of J on H,}l (RN ) Based on minimax argument, we
can find two mountain pass type critical points u1 and u; above, s.t., u; € + P NN, up € —P NN.
As u3 is sign-changing, combining computations of critical groups of J at infinity and zero with
topological analysis of level sets of J, and also using Morse theory of weak smooth functionals
on H' (RV), we consequently derive the fourth nontrivial solution.
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2. Preliminaries from the spectral theory of Schriodinger operators
2.1. A review of some classical results
We first take a look back at some definitions given by [16]:

Definition 2.1. (see page 136, [16]) Let V (x) € L? (RY) 4+ L> (R") and be real, with p =2 if
N<3,p>2if N=4and p > % if N > 5, then V is called Kato—Rellich (K-R) potential.

Definition 2.2. (see Definition 14.7, [16]) A potential function V (x) is called a Kato potential
if Visreal and V € L2 (RN) + L™ (RN)E, where the € indicates that for any € > 0, we can

decompose V = V| + V, with V; € L? (RN) and V, € L™ (RN), with | V2|~ < €.

Proposition 2.3. (see Corollary 14.10, [16]) If V is a real Kato potential, then gess (—A + V) =
[0, +00).

For the readers’ convenience, we present a proof for the following well-known result (see
[16]):

Proposition 2.4. Let V be a real K-R potential, | ‘lim V(x) =0, then oess (—A+V) =
——+00
[0, +00). !

Proof. In view of the hypothesis, Ve > 0, 3R > 0, for x € RV, x| = R, |V (x)| < e. Write
V=Vi+ VW, VieL?(RN), V, € L>(RY). Notice that

V=xo,r)V1+ xBc0,R)V1+ xB0O,R) V2 + XBc(0,R) V2
v v, 2.1)

where VI(R) = xBoO,R) V. Vz(R) = xBe(0,R)V, it follows that for x € RV, |x| > R, ’VZ(R) (x)‘ =

|V (x)| < &. Observe that VI(R) eL? (]RN) = VI(R) elL? (RN), so V is a Kato potential. Using
Proposition 2.3 we arrive at the conclusion. O

Corollary 2.5. Let V be a real K-R potential, lim V (x) = «, then oes(—A+V) =
[, +00) |x|—+4o00

As is known, if the real potential V is in the K-R class, then —A + V is a self-adjoint,
semibounded Schrodinger operator with domain H?> (RN ) and there is a simplified version
of Persson’s theorem which proves that the behavior of the potential V' at infinity determines
Oess (—A+ V)

Proposition 2.6. (see Theorem 14.11, [16]) Let V be a real-valued potential in the K-R class, and
let —A 4V be the corresponding self-adjoint, semibounded Schrodinger operator with domain
H? (RN ) Then, the bottom of the essential spectrum is given by
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((_A +V)o, ¢)L2(RN)

infoess (—A + V) = sup inf 3 , 2.2)
Kk CRN pecg® (RN\K) ||¢||L2(RN)
$#0

where the supremum is over all compact subsets k C RV .

Suppose:
(V1) V (x) is a real potential, and IF (x) € L™® (RN), o= ian F (x) € (—00, 400), s.t.
xeR
lim (V(x)—F(x))=0.
|x]—00
As lim V (x) =«, by taking F (x) = «, the hypothesis (V) evidently follows. With the aid

|x|—o00
of Proposition 2.4, a general version of Corollary 2.5 can be derived:

Proposition 2.7. Let V (x) be a real K-R potential and suppose (V1), then
Oess (A + V) C[a, +00). (2.3)

Proof. Based on the assumption, decompose V = V| + V, Vi € L? (RV), V, € L* (RV). Set
V=V + V2, Vo =V, — F (x). Employing Proposition 2.4 we obtain

Tess (—A + V) = [0, +00) . (2.4)

By (2.2) we have

0 =infoess (—A + V)
Jan IVOI? + V?

= sup 1 2
«CRN ¢€CF (RN \k)\{0} el L2(RV)
\V4 2 I V4 2
<sp i VLAV @5)
K« CRN $€C° (RN \k)\{0} ||¢||L2(RN)

ending the proof. O
2.2. A min—max principle on H' (RN)

Proposition 2.8. (min—max principle, operator form) (see Theorem XII1. 1, [33]) Let H be a self-
adjoint operator on Hilbert space E and H is bounded from below, i.e., H > clI for some c. De-

fine uy (H) = sup inf (HYr, V) . Then, for each fixed k, either:
B=span{ 1. Y1} Yi €D(H) ‘”GD;”Q%‘”JE:‘

(a) there are k eigenvalues (counting degenerate eigenvalues a number of times equal to their
multiplicity) below the bottom of the essential spectrum, and [y (H) is the k-th eigenvalue count-
ing multiplicity; or (b) w is the bottom of the essential spectrum, i.e., iy =inf{\ : A € 0ess (H)}
and in that case [y = k+1 = Uk+2 = --- and there are at most k — 1 eigenvalues (counting
multiplicity) below .
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Lemma 2.9. Suppose V(x)eL”(RN), p=2ifN<3, p>2ifN=4 p> % if N >S5, or
p = +00, and define

Jan [Vul> +V (x)u?

= inf max ; 2.6
Tk e (&) 4€B\(0) S u? 2.6
dim B=k
Vul> +V 2
oy := inf max fRNl Ul + vV xu , 2.7)
(&) u€B\(0) Jrw u?
dim B=k

then ny = oy for Vk € N.

Proof. One deduces from [40] that —A + V is bounded from below on H2 (RN ) for K-R

potential and so 1, > —oo. Choose linearly independent wy, -, w; € H! (RN ) and set ‘B =
+00

span{wy, -+, wr}. As CJ° (RV) is dense in H!(RY), for w; we can find {a)i(m)} . C
m=

C§° (RY) such that a)i(m) — w;in H' (RY) asm — +o00,i=1,2,-- k.

Step one: We claim that 3IM € N, Vm > M, m € N, o\, .- w,({m) is linearly independent.

By way of negation, 3jp € N, and a sequence {ml}l | €N, m; — +ooasl — +00, s.t. a)ﬁml) =

) o) g, (m)

iz

1

2 . (m1)
Set |a(m1)| = ( 3 ‘ (m1) ) and Af,;; = ’a"(ml) , 1 # jo. We are confronted with two cases:
i#jo o

(1) |a(””)| — +00, [ = +o00.
Then we have

w(ml)

=Y ADw™ (2.8)

|a(m1)| i#Jo

and infer that IM* > 0,3L €N, VI > L, iV # jo such that

(i) %
Ap | ZM". (2.9)
Otherwise, Ve > 0, VL ¢ N, 3 Z
‘Af;; <&,i jo. (2.10)

(2.10) yields

]2
—Z‘A;;; <(k—1)e, 2.11)

i#jo

which is impossible as ¢ is small enough.
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+o0
)
Hence, for [ > L, up to a rewritten subsequence {A,(é, )} , Aig # jo, i = ip. Since
I=L

- ) +o0
‘A(l) < 1, there exist A; and also a subsequence, still labeled by {Af,’“)}l ' such that
lim A,% A;. Take limit for (2.8) in H! (RN), we obtain
=400
> A =0. (2.12)
i#jo
Notice that |A,~O| >M*>0,s0 wq, -, Wjy—1, Wjy+1, - , w are linearly dependent which
contradicts dimB = k.
(2) {@®0} ™ is bounded.
The assertion is obvious in this case.
Step two. Define
Yoo S IVul?> +V (x)u?
ueB\ {0} Sy u? ’
~ Vul?> +V (x) u?
)Lm - max fRN | | - ( ) :
ueBm\ (0} Jrnu
| . span{ (’"), . a),((’")} , m large enough.
Now we show that A,, — A. To see this, we assume that A, is achieved by &, € B,

k
([ () = 1. Set Uy = Z am ('") , by the proof of step one we know that there exists

My >0, ‘ a" )‘ < My. Hence we can find a renamed subsequence {« { (m)} , lim Ol( m) =q;.
m=1 m—+oo
k
So iy — tip =Y. diw; in H' (RV) and thus we obtain
i=1

-~ o~ Vip?+V @) 2 ~
X — Ay = S Vol — Wi 5 (2.13)
fRNMO

- k
On the other hand, we assume that % is achieved by ug = Y o;w; and set |lug|| = 1, then there
i=1

exist {un }1 € C5° (RV), u Z af a) ) s ugin H' (RN). If p = +o0, the conclusion is

evident so we just need to deal w1th the case p > 5 Usmg embedding theorem we get
Uy —> g in LI (RN ) , (2.14)

for g € [2,2*],if N >3 and for g € [2, +00) if N =1, 2.
We claim that
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. 2 2
mEI}rloo V(x)um:fV(x)uO

(2.15)
RN

RN
Divide the proof into two cases:
(i) N >4. Since p> &, 1

1 _
70 q—1:>q€

(1, %) By Holder inequality and Cauchy—
Schwarz inequality,

f V(x) (u,zn — u%)

RN

q

<Vl /|um+uo|q Nt — o)l dx
RN

<IVIliLe - (lwmll 20 + lluoll 120) - ltm — uoll 129

=ClViiee - Numll + lluol)) - llum — uoll — 0.

(2.16)
(i) N < 3. Observe that V € L? (RN) if N <3, taking ¢ = 2 shows
[ Ve ()| < CIvi - Qnll + ol - — ol > 0. 217)
RN
AS u,, — ug in L2, we have
lumll L2 = lluoll L2 - (2.18)
Notice that
(Vipm, Vi) 2 — (Vug, Vuo) 12
:/|V(um—uo)|2+2fV(um—uo)Vuo—>O, (2.19)
RN RN
consequently,
T Jer Vunl + V@ < (2.20)
fRN u,

Combining (2.13) with (2.20) we get Ao = A.
Step three: Define A :=

. IVul?+V (x)u?

L P e > 0,38 € 1 (87),
CH

dim B=k
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Vul> +V (x)u?
max JB¥ V¥ . D 4 E 2.21)
ueB\{0} Jrnu 2

Step two indicates that there exists B C C5° (RV), dim B =k, st

Vul? +V (x) u? Vul?> +V (x) u?
— L ! ) max Jan 1Vul . W) ¢ (2.22)
ueB\ (0} Jrnu  ueB\(0) Jev u 2

Therefore, by combining (2.21) with (2.22) we have

Vul? + V (x) u?
max Jew 1Vu . 2L (2.23)
ueB\(0) Jrv

The proof is complete. 0O
Corollary 2.10. Suppose that V is a real K-R potential, then ny = oy for Vk € N..

Set A= —A + V and define

Wi = sup inf  (AY,V¥)p2, (2.24)
By CH2 we%k \NH?
dim B, _1=k—1 ”w”LZ 1

ap:=  sup inf /|V¢|2+V(x)1p (2.25)

By cHl yeB nH! "
dim By_=k—1 Hx//IILz 1R

Br:= inf max (Ay,¥);2, (2.26)
CH2 yeBy
dlm%k =k ¥l 2=1
yei= inf  max / VY24V 0y, (227)
By cH! pyeBy

dim %k k¥l 2=1RN

where B7- | is the orthogonal complement in L? (R") of By_;. Obviously, B = ox = i = y
for Yk € N.

Let V be a K-R potential, ogis (A) # &, info (A) = infoygis (A), {)Li}ﬁ:] €ogis (A), 1 >1,s.t.,
A =info (A) <Ay <--- < A; <0y, agis (A) N [A1,00) = {Ai}ﬁzl, 00 ;= infoegs (A). Let Ny be
the subspace of D = D (A) = H? (]RN ) spanned by the eigenfunctions vy, - - - , ¥4, correspond-
ingto Ay, -+, A7, d =dim N;. Then H! (RN) = N; & M;, where @ denotes decomposition into
direct sum in L? (RN), M = NIJ- NH! (RN). Let Ex_1 :=span{yr1,---¥x_1}, k <d;+ 1, and
set

Ck:= inf  (AY, Y2, (2.28)

1 AE2
VeE; |NH

Ivl,2=1



C. Li, S. Li/ J. Differential Equations 263 (2017) 7000-7097 7011

g := inf /|vw|2+V(x)¢2. (2.29)

veE; nH!

Iyl =1 RY
Under the above hypotheses, our consequence concerning min—max principle reads:
Lemma 2.11. (i) & = uy for k <d; + 1; (ii) pr = ax = yr, Yk e N.

Proof. Divide the proof into two cases:

() k<d +1.

We first claim px = k. Obviously, &k < uk, so we focus on g < &. For VB;_1 C H?, take
two cases into account:

(@) Yo € ‘B,ﬂ-_l N Ex—1\{0}. Set |[¥oll;2 = 1. Denote by E; the spectral system of A. Let
PE (1, +00) be the orthogonal projection operator x(.,+oc),» Where x(u,+o0) is the characteristic

function of (12, +00), we have [" dEj = Pg(u o), A = [155 AdE;.

Due to the fact
400
inf  (Ay,¥)2= inf / Ad (Ex ¥, ¥r) 2
veEL \nH? yeEL \nH2
Iyl 2=1 Iyl 2=1 %
+o00
= it [ dE ez, (2.30)
veEL | NH2
Il 2 =1 =1
hence,
inf  (AY, ¥) 2 < (A¥o, Vo) 2 < pr—1 < k. (2.31)
veB  NH2
Il 2=1

(b) SB,J(-_I N Ex—1 = {0}. Observe that the map PEkL i EB]J(-_I NH? — E,f-_l N H? is one to one
onto. Actually, we just need to show the surjection since the injection is evident. Otherwise, 3y €
E,ﬁ-_l ﬂHz\ {0}, for Vx € %,J(—_l NH?2, PEkL_lx #y.Set|lyll;2 =1, Fy =span{y, ¥1, -, Yx—1}.

k—1
As dim Fy = k > dimB_| = k — 1, there exists z € Fx N B}~ |\ {0}. Denote z =ay + Y Bivi.
i=1
Clearly, o # 0. Then PEkL Z=ay, ie., PEkL 1 < =, violating the hypothesis. Consequently, for
Yo € EX \NH? 3y e B NH? Pgi ¥ = ¢. Take the minimizing sequence {¢, 2O of

n=1
(2.28), gy € Ei- \NH?, |lgnll;2=1,s.t, & >0and

(A@n, @n)p2 < G+ én- (2.32)

For V¢ € Bt | NH% |[Yll2 =1, set ¢ = Pp ¥ + P, . For above g, 35, € (0,1],
Ve B NH2 |yi] . =1st,

w: = Ef'—lw;’k + PEk—ll/j;tk =S$p¢Pn + PEk—ll//::‘ (2.33)
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Set Pg, ) = tagn, t2 =1—52, ||yl 2 = 1. Therefore,

inf (A, ¥) 2 < (AYE ),

veBt nH2
¥l 2=1

< Gk +en)sp + k1t

<k +ep (2.34)
and this yields
inf  (AY, V)2 < G- (2.35)
WG%klilﬁHz
¥l 2=1
(2.31) together with (2.35) derives

sup inf  (AY, ¥)2 <. (2.36)

®,_cH2  VeBL nH?
dim By _=k—1 ¥l 2=1

We conclude the claim as predicted.

Notice that ¢ = & for k < d; + 1 (see Lemma 9.1 for more detail), so ux =& fork <d;+1.
That’s the precise statement (i).

Next we show ¢ = B for k < d; + 1. Note that VB C H?, dimB; =k, Iy* e BN E,ﬂ-_l,
l*|l;2 = 1, then we obtain

max (Ay, ¥) 2 > (AY*, %), > & (2.37)

yeBy
¥l 2=1

alluding to By > ¢k for k < d; + 1. On the other side, for k < dj,

Bk < Iwnfzx (A, )2 < pk = &, (2.38)
1,2 =1

and as k = d; + 1, for above ¢, set E((;;j_l = span {1/f1, Y, (pn}, hence,

Bay+1 =< max (A, V)2 < {A@u, 0n)i2 < L4411 + En,s (2.39)

(n)
wEEdl+1

vl 2=1

and this gets 84,41 < {4+1. The combination of (2.37), (2.38) and (2.39) ends the proof.
It is left to us to verify o =& fork <d;j+ 1. For V8,1 C H 1 take two cases into account:
(1) g € %2‘_1 N Ex—1\{0}. Set ||[Yoll; 2 = 1. As & = & for k <d; + 1, we have
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inf /|vw|2+V(x)¢
!//E%L nH!
i, a=1 BY

= inf  (AY,Y)p2
x//e‘B lﬁEk 1
||1/fHL2 1

< {AvYo, Yo) 12 < ti—1 < {k = &k. (2.40)

(2) B | N Ex—1 = {0}. The argument is quite similar to (b).

(1) +(2) = o <.
On the other hand, on account of the definition, ay > &;. The assertion follows.
Overall, we conclude the proof of (ii) for k < d; 4+ 1 with the help of Corollary 2.10.

) k>d +1.
We can always choose {y; }l 41 € Ejl N H? such that {1//,} is a complete basis of L2,

(Wi, ¥))2 =0, fori# j,i, j=d+1.
Observe that Ve > 0, VB C H', dim®By—y =k — L By N (Eogse — Eoy) H* # (0},

This is due to dim (Ecr()+s — Ego) H? = 0.
For fixed ¢, > 0, then there exists %,(("_)1 CH', dim%]((”_)1 =k—1,and J,, € (%;{"_l) N

(EO'()+£” - EG()) H v ||L2 = l, s.t.,

o — &y < inf /|w|2+V(x)1,u2
i
we(%g?l) ﬁHlRN
il =1
< inf (Aw, w)LZ

we(‘Bg?l)LﬁHZ

vl 2=1
<(AVn. Yn),2 < 00+ &n. (2.41)
Lete, — 0, (2.41) yields
ax=  sup inf / VY2 + V (x) Y2 < oo = k. (2.42)
B cH! IIIE%L 1ﬂH1

dim By k1 [l 2=1 BY

Due to the fact o9 = pg+1 = @g+1 < ok for k > d; 42, we get o = uy for k > dy + 2.
We now remain to prove uy = B for Yk € N. In view of the definitions of B and py, for
&, > 0, there exists %Z(") C H?, dim%;(") =k, and ‘B,E"_)I C H?, dim‘B,(:'_)l =k—1,s.t.

max (AY, ¥)2 < B+ én, (2.43)
\be%:(")
Iyl 2=1
inf (A, )2 > g — &y (2.44)

o L
ve(B)) nn?
Iyl =1
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()

N - 1
Since dim ‘B:(") > dim ‘B,({n_)l, there exists wé") IS EB;:(”) N (EB,&"_H) , ‘ 0

this, the combination of (2.43) and (2.44) yields Br > uy for Vk € N.
The other side of the shield, for Ve > 0, notice that dim (E(,ﬁg — E(,O) H? = co. If

k
k= di + 2, pick {&°] st 00 < £5) <80, <o < 59

= 1. Based on
L2

s < 09 + &, and take
i=dj+1

k
[w)] C (Eoyte — Eop) H?, sit, <Al/fi(8),1/fj(-€)>L2 —O0forisj,d+1<i,j<k

1

i=dj+1
(¢) (&) () (¢) (&) ., (&) () .
oo < <A1//dl+l,¢dl+l>L2 <£9 L 89 < <A1//l. Y >L2 <&© for dj+2<i <k and
(EEJ(_S) — EE}S)1>1/’J('£) = 1//;8) fordj+1<j <k.SetEy.= span{llfl, Y, Wé(ifil,m J/f,sg)}.
Thereby,
Br < max (AY, )2 <opte, (2.45)
Vel e
Iyl 2=1

alluding to By < o9 = ux. We therefore conclude the proof of Lemma 2.11. O
3. Compactness

Let V be a K-R potential. In what follows, we set f (x,s) = as~ + bsT + g(x,s),
g(x,0)=0, | l‘im @ = 0 uniformly with respect to x € R", and also make the following
S|—00
hypotheses:

(f1) 3B > 0, such that Vs;, s € R, Vx e RV,

lg (x,s1) —g(x, )| <Bls1 — 52|

and 8 < o9 — A (a, b), where A (a,b) = max {a, b}. R R
It might just as well assume m + @1 > 0 and info (Am) > 1 with A, = —A+2(V +m) by

choosing m > 0 suitably large. Clearly, A,, := —A + V 4+ m is a positive definite self-adjoint
operator with D (A,,) = H* (RV).
Denote by

H,;(RN)Z ueH1<IRN>:/|Vu|2+(V+m)u2<+oo

RN

the Hilbert space equipped with the norm

(S

= /|Vu|2+(V+m)u2

RN

and the inner product
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(u,v)m:/Vqu+(V+m)uv.
RN

It is easy to check that H) (RV) = H ! (R"). Indeed, notice that

> 1[Gy ] 215 2
5 =5 |Vu| +§ [Vul“+2(V+m)u
RN RN
= llul?, < (CIVillLr + IVall oo +m + 1) ul?, (3.1)

where p=2if N <3,and p > % if N >4, so the assertion follows.

On account of the hypothesis, o (A,,) € (0, 400), alluding to the fact that A,;l exists. Set
gm (x,u) = f (x,u) +mu. Obviously, in view of (f1), A,,'gm (x,u) € H? for Yu € H'. Hence,
for fixed ¢ € H!,

/gm (x,u)qozfAmA,;‘gm (x,u)- ¢

RN RN
=/VA;11gm (x,u)-Vo+ V4+m) A g (x,u) - . (3.2)
RN

Therefore,
().}, = (= A en (o) )

:fVqu+V(x)ug0—ff(x,u)<p, 3.3)

RN RN

yielding J' (u) =u — A, g (x, u).
To show the main consequence of this section, we first recall the concept of Palais—Smale
condition:

Definition 3.1. Let X be a Hilbert space, ¢ € C! (X, R) and ¢ € R. We say ¢ satisfies the (PS),
condition provided that any sequence {u,,}:[;xl’ C X such that ¢(u,) — ¢ and ¢'(u,) — 0in X,
has a convergent subsequence in X.

Definition 3.2. Let X be a Hilbert space, ¢ € C 1 (X,R). For c1, ca € R, 1 < c2, we say ¢
satisfies the (PS) condition on [c1,c2] if ¢ satisfies the (PS), condition for V¢ € [c1,c2].

Definition 3.3. Let X be a Hilbert space, ¢ € C! (X, R). We say ¢ satisfies the (PS) condition
provided that any sequence {u,}] C X such that {¢(u,)} is bounded and ¢'(u,) — 0in X,
has a convergent subsequence in X.

Theorem 3.4. Let V be a real K-R potential, oqis (A) # &, info (A) = infogis (A). Under the
hypothesis ( f1), if (a,b) ¢ X (A), then J satisfies the (PS) condition on H,}l (RN).
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Before entering the proof of Theorem 3.4, we state a well-known result (see [41]) as follows:

Proposition 3.5. Assume that || < oo, 1 <p,r<oo, f€C (§ X R, R) and

|f )| < C(1+ [ul?/7). (3.4)
Then, for every u € LP (Q2), f (-,u) € L" () and the operator
T:LP(Q)—> L (Q):ur— f(x,u)
is continuous.

Proof of Theorem 3.4. In view of the hypothesis (f1), it would not hurt to assume A (a, b) +
B > 11, s.t., odis (A) N [w1, A (a,b) + B] = {Ai}l_y. A1 = p1 =info (A) <Xy < -+ < A. Di-
vide the proof into three steps:

Step one. We prove that for any bounded sequence {u};2) C H' (RV), s.t., ux — ug in
H'(RN), Pyui — u* in H' (RV), uj — @ in L? (R"), then & = up a.e. on RV, u* = Py uq
a.e. on RY, where Py, is the orthogonal projection onto N; in L? (RN )

2

e (RN ) then for any bounded open domain 2 C RY, up — up in

Observe that uy — ug in L
L? (€2), and hence

/ gy — / uop, Yo € L*(Q). (3.5)
Q Q
Therefore,
/ upp — / uop, Yo € C§° (RN) . (3.6)
RN RN

Asug — i'in L? (RV), we have

/uk(p = /ﬁ(p,V(p eL? (RN), (3.7)

RN RN

and thus,
/ Uy — /mp,v(p eCe® (]RN> . (3.8)
RN RN

(3.6) together with (3.8) shows

/(uo—ﬁ)q):o,wpecgo (RN). (3.9)
]RN
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Due to the fact that Cgo (RN ) is dense in L2 (]RN ), we obtain

/ (o — )9 =0, Vg € L2 (RN) , (3.10)
RN

S0 I = ug a.e. on RV, This indicates that

up — ug in L2 (]RN>, 3.11)
and thereby,
/ Pyuip — / Pnupp, Yo € L? (RN) . (3.12)
RN RN

Since Py,uy — u* in H' (RN) yields

/PNlukw = /u*go,‘v’go eL? (]RN), (3.13)
RN RN

combining (3.12) with (3.13) we get u* = Py,uq a.e. on RY . This concludes the proof.

Step two. We show that for any sequence {uk},‘::o? - Hnll (RN), s.t. ||J/(uk)Hm — 0, is
bounded in H) (RV).

Suppose by contradiction, there exists {u ;> C Hy, (RN), |7/ i), = 0, llugll,, — +o0,
and so |lug|| — +oo. Take M|} — +o0, s.t. % — 0. Set uy = ﬁ We claim that for Vg €
3 (RY),

| Jav 8 ou) ¢

lim —=0. (3.14)

k—-oo lluel

Actually, notice that CJ° (RV) c L' (RY), so for Vo € C°(RN), Ve > 0, 3K} =
K{(e,9) €N, Vk > KT,

/‘ lg (x,u) ol _ BM

< Nell 1wy
loeg | gl O EY)

*
‘uk|<Mk

)
< ol oo ||<P||L1(RN) : ||‘P||L1(RN) =3 (3.15)

On the other hand, Ve > 0, 3S* = S* (¢, ¢) > 0, Vs € R, |s]| > S*,

f(x,s)—as™ —bst e
max < ,
xeRN s 2|ell

(3.16)
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and hence 3K5 = K5 (¢, ¢) €N, Vk > K5, M > S§*,

/ lg Cx,up) @l
(73]

ug | =M
glx,up)| ~
= ——| - lukl - ol
Uk
|’41<|>Mk
Pk
2||§0|| /
1 1
2 2

€ ~ 2 2
< |1t | /lfﬂl
2 el /

&
=
2lell

loll = = (3.17)
10 =3 .

Therefore, for Vk > K* = A (K;", K;),

| [ & (x, ui) 9|

fla |
< / lg (x, uk) @l n / lg (x, up) @l
flaic llaie |
Iuk\<MZ lug| =M
<EiE (3.18)

and this alludes to the claim.
Assume 7 — ug in H! (RN) then 0y — up in LIOC (]RN), 2 < p < 2*. According to
the definition, for fixed ¢ € CJ° (RY), there is a bounded open domain  C R" such that

{x e RN : ¢ (x) #0} C Q. Therefore, iix — ug in L? (). Since K ( “”m — 0, by (3.14), we

have
/ VoV + V (x) uop =a / uy o +b / ug @, Vo € C (]RN> . (3.19)
RN RN RN
Now we show that
f ViuoVe + V (x) uop = a / uy o +b / ulo.VoeH' (RN) , (3.20)
RN RN RN

and this indeed indicates that u is a weak solution of (1.3).



C. Li, S. Li/ J. Differential Equations 263 (2017) 7000-7097 7019

Notice that C(‘)’O (RN) is dense in H'! (RN), so for fixed ¢ € H! (RN), we assume {(pk}]':fl’
C C° (RY), gx — ¢ in H' (RV). An argument analogous to the combination of (2.16) and
(2.17) gets

lim /V(x)u()(pk=/V(x)uo<p, (3.21)
k— 400
RN RN

alluding to (3.20).

Since (a, b) ¢ T (A), we derive ug = 0. Now we claim that [|u¢|| ;2 — 0. Otherwise, 35* > 0,
dK; e N, Vk € N, k > K1, ||ukll;2 > 8*. In view of the hypotheses, it is easy to verify the
following fact

f,s)—f(x,82)
p

sup su < A(a,b)+ B. (3.22)
s1, $2€R, 51752 xeRN S1— 52
Notice that W — 0, hence, for Ve > 0,3K, e N,Vk e N, k > K>,
k

f IV Py |” + V () (P i)’
RN

2 2
+/ (VP + V@) (Pypii)

RN
X, UL ) ~ ~
< / f(u—k")u,% +e<(A@b)+B) i), +e, (3.23)

up#0

where Py is the orthogonal projection onto N, i in L? (RV).

The hypothesis shows A (a,b) + 8 <6, :=T (ud,+1, 00) = min {/Ld,“, ao}, and then there
exists d* € (A (a, b) + B, 6), for ¢ > 0 sufficiently small and Vk e N, k > K = A (K1, K»),

(A (a,b)+ B) lliell3, +e < d* a2, . (3.24)
Inserting (3.24) into (3.23),

/}VPN,ﬁk|2+V(x)(PN,ﬁk)2

RN

+ f VP itk
RN

’ +V(x) (PNlLﬁk)z

2
< d* || Pt | o+ d* | Pypiie]| (3.25)

L2

and therefore by Lemma 2.11,
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2
(91 — d*) ” PNIJ_Mk‘ 12

2 2 2
5/‘VPN,“““ +V(x) (PNIJ_Mk> —d* HPNIJ_uk 12

RN

<d* | Py 32 - / VPP + V () (Pyiie)’

RN
= (d* - ,bL]) ” PNI”Zk ”iz ) (3.26)
ie.,
~ |12 d* — _
” PNlLuk‘ 12 = 0 — 5*1 ” Py, uk ”22 : (3.27)

As ug =0, by step one, Py,ux — 01in H! (RN), and thus
Py, ik — 0in L (RN ) . (3.28)
Thereby, it follows from (3.27) that
Pyiix — 0in L2 (RN ) . (3.29)

(3.28)4+(3.29) = uy — 0in L? (RN), which contradicts original hypothesis ||| ;2 > §* for
k > K. We arrive at the claim as desired. By [23], for Vr € (2,2%),

4l .- — 0, (3.30)

and accordingly,

J ,
1 = M—/V(x)ﬁ%

2
lluek

- f(x,ug)
IR, + / SRSILDF

Uy "k
{xeRN: uy5£0}

Ntk [l

< |V @ol,, - 2+ Vil - el
o
+(IVall o + 1A @ D) + B+ 1) - ikl
—0 (3.31)

as k — +o0, % + é =1,p> % if N >4,and p=2if N < 3. We get a contradiction! The proof
is complete.
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Step three. We show that any sequence {uk},‘:gf C H,}, (RN), s.t. H J' (ug) ||m — 0, contains a
convergent subsequence. Since {uk}kt’f is bounded in H'! (RN ) by step two, we assume uy — ug
in H' (RV). For ¢ € C3° (RV), there is a bounded domain Q@ C RV, {x e RV : ¢ (x) #£0} C Q.
Hence, uy — ug in L% (). As

If (el < (A(lal, b))+ B) - (A +sD), (3.32)

for Vx e RV, Vs e R, by Proposition 3.5,

/[f (x,up) — f(x,u0)] - o
RN
<If (ou) = f ouo)ll 2o - el 2 — 0. (3.33)

and a standard argument shows

lim / Vx)ure = / V (x) uoep. (3.34)
k— 400
RN RN
Consequently,
/ ViV + V (x) uop = / £ (x,u0) 9. Yo € C (RN) . (3.35)
RN RN

Based on the density of C3° (RV) in H! (RV), we yield

/ VuoVe + V (x) top = / f(x,u0) 9,V € H (RN) , (3.36)
RN RN

and this indicates that ug is a weak solution of (1.1).
Now we remain to prove uy — ug in H 1 (RN ) Note that

(J" (i) — J' (uo) , ug — uo),,

= / IV (g — uo)|* 4+ V (x) (ug — up)*
RN

—f [f (x ur) = f (x,u0)] - (i — uo)
RN
o (3.37)

hence, by (3.37), for Ve > 0, AK* e N, Vk e N, k > K*, such that
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/|VPN, (wk —uo)|” + V () | Py, (g — o)
]RN

) 2
—|—/‘VPN1L (uk—uo)} +V(x)‘PN,L (”k_uO)‘

RN
< [ 17 o = £ o] o=y + e
RN
< (A(a,b)+ B) llux —uoll, + . (3.38)

Mimicking the trick employed by preceding argument, we derive

ui = g in L2 (RY). (3.39)
Once again by [23], for Vr € (2, 2%),

u = o in L” (RY). (3.40)
Using (3.37), (3.39) and (3.40) we have

lug —uoll® < [|J" @), - Mk — w0l + Vil Lo - g — uoll3 2
+(IV2ll e + 1A (@. D) + B+ 1) - llux — uoll7
— 0, (341

+-=1,p> % if N >4, and p =2 if N <3. The assertion follows. 0O

1
q

=

4. Convexity and concavity
Before presenting section, we first recall some definitions:

Definition 4.1. Let E be a Hilbert space and . > 0 be a number. A map & : E — E is said to be
p-monotone on E if and only if

(h(u)—h(v),u—v)Ezu||u—v||%,Vu,veE. 4.1)

Definition 4.2. Let E be a Hilbert space. A function 7 : E — R is said to be pu-convex on E if
and only if for V¢ € [0, 1], Vu,v € E,

I(1—0Du+tv)+ %t(l — 1) |lu — v||125 <{A=01w)+tI(). “4.2)
Assume:

(V*): Let V be a K-R potential, o4is (A) # &, info (A) = infoygs (A), {A,-}ﬁzl € ogis (A),
odis (A) N (1, il =Yy, 1> 1 s.t, A =y =info (A) <da <+ <A < 0p.
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Lemma 4.3. Under the hypothesis (V*), then for fixed v € N;, I (v+ w, a,b) is p-convex in

w € My if and only if w1, wy € M,

(I'v+wia,b)—I' (v+wa,a,b), w —wa) > plwy —wal.

(4.3)

Proof. “Only if”. According to the definition, if I (v 4+ w, a, b) is pu-convex in w € M;, then for

fixed v e N;, Vt € [0, 1], Ywy, wy € M,

I+ (=t wi + 1wy a.b)+ %r(l — 1) Jwy — w2

<=0yl (v+wyi,a,b)+1tI (v+wy,a,b),

ie.,
I(v+w; +t(wz—w1),a,b)—1(v+w1,a,b)+%t(1 — 1) lwy — wal%
<t (@w+wza,b)—1@+w,a,b)].
Therefore,

|
/(I’(v—i—w] + st (wp —wy),a,b), wy — w1>mds+%(1 — 1) lwy — wy|?,
0

<Iw+wy,ab)—1Ww+wia,b).
Make use of the integral theorem of the mean, 3s1 € (0, 1),
I
(I @+ w41t (wa —wi),a,b), wa —wi), + 2 (1= 0) Jwy —wall,
S1(U+w2,a,b)_1(v+wl,a,b)-

Proceeding along the same lines,

1
/(1’(v+w2+st(w1 —wy),a,b),w —w2>mds+%(1 —1) |lwy —w2||,271
0

<I(w+wy,a,b)—1(W+wza,b),
and thus, 3sp € (0, 1),
"
(I @+ w2 + 52t (w1 —w) @, b), wy = wa),, + = (=) Jwy —wall
fI(U-I-w],a,b)—[(v—i-UJz,a,b).

Let t — 0, hence, the combination of (4.7) and (4.9) obtains

(4.4)

4.5)

(4.6)

4.7)

(4.8)

(4.9)
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(I'0+wi,a,b), wy—wi), + 5w —walld <T@+ws,a,b)—1@w+wi,a,b),
(I'v+wa,b),wi—w), + 45w —wlz, <Tw+wi,a,b)—1@w+uwsab),

(4.10)
and this gets (4.3).
“If”. Observe that (4.4) is equivalent to (4.6), and (4.6) can be replaced by
1
f(l/ -+ w5t w2 = wi) 0, by, wy — w), ds + 5 (1= g — wal,
0
1
5/(1/(U+w1+S(w2—w1),a,b),w2—w1>mds, 4.11)
0

yielding
(I' O+ wi+s w2 —wp),a,b)—I' (04w + st (wy —wy).a,b), wy—wy) ds

> (1 —1) lwy — wall?,. (4.12)

T O\_

(4.12) is clearly derived by (4.3). We conclude the proof. O

Lemma 4.4. Under the hypothesis (V*), if A (a,b) <6, =T (pcd,+1 , oo), then for fixed v € Ny,
I{U (v+ w, a, b) is w-monotone on My, i.e., Iu > 0, for Vwy, wy € Mj,

(I, +wi.a,b) — I, (v+wy,a,b),wy —wy) > pllwy — wallZ, . (4.13)

Proof. Due to the facts

w+w)t —@+w)t < (w —wy)T, (4.14)
w+w)t—@+w)T =W —w)”, (4.15)
W+w) —@W+w) >(wp—w2), (4.16)
W+w)” —@+w) < (w—w)", (4.17)

we have
(I' 0+ wi,a,b) = 1I'(v+ w2, a,b), wi —wa),

= f IV (w1 —wp) [+ V (x) (wi —w2)* —a[lwy — wa 7,
]RN
—(b —a)/ [@+w)t —@W+w)t] (w —wp)?t
]RN
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— (b —a)/ [+ w)t —@+w)T] (wi —w2)”

]RN
zf|V(w1—wz>|2+V(x>(w1—wz>2—a||w1—wz||iz
RN
2 —12
—b—a) | —w)| >~ b —a) [ —w)7|}>
Sy 12 (4.18)
= o tm wy — wzll;, .

if a < b, and

(I' 0+ wi,a.b)—1'"(v+ws.a,b), wi —w)

= / IV (wi —w2)[* + V (x) (w1 — w2)® = b [lwy — wa 17,
]RN
—(a— b)/ [+ w) —@+w)" ] (wi —w)*
]RN

—(@—-Db f [(v+w)™ = @+w)7]- (wr —wa)~
RN

> f IV (w1 — w2)|* + V (x) (w1 — w2)> — b |lwy — wall3,

RN
—(@=b) |wi — w2 = @=b) | wr —wa)" |
- 6 —a lwy — ”2 4.19)
=G rm T .

if b <a. This ends (4.13) as desired. O
Using Lemma 4.3 and Lemma 4.4 we have

Corollary 4.5. Under the hypotheses of Lemma 4.4, for fixed v € N;, I (v + w, a, b) is ju-convex
inw € M,.

Definition 4.6. Let E be a Hilbert space and p > 0 be a number. A map & : E — E is said to be
p-antimonotone on E if and only if

(h(u) —h(v),u—v)g<—plu—vl%,Vu,veE. (4.20)

Definition 4.7. Let E be a Hilbert space. A function / : E — R is said to be p-concave on E if
and only if for V¢ € [0, 1], Vu,v € E,

I((1—t)u+tv) — gt(l —O)lu—vl% =0 =) w)+1tI ). 421

An argument quite similar to Lemma 4.3 yields
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Lemma 4.8. Under the hypothesis (V*), for fixed w € M, I (v + w, a, b) is p-concave inv € N;

if and only if Vv, v2 € N,

(I' i +w,a,b)—I'(va+w,a,b),vi —va), < —pllvi —vall3,.

(4.22)

Lemma 4.9. Under the hypothesis (V*), if T (a, b) > A;, then for fixed w € M;, I, (v + w, a, b)

is p-antimonotone on Nj, i.e., Ap > 0, for Vv, v € Ny,

(I, i +w,a,b) = I, (va+w,a,b),vi —va), <—plvi— v,

Proof. An argument analogous to the proof of Lemma 4.4 indicates that

(I'vi+w.a,b)—1'"(v2+w,a,b),vi — )

=/wwrmW+vmwrwﬁ—mm—mm

RN
—(b—a) / (1 +w) =@+ w)*) (v —v)"
RN
—w—m/«m+m+—m+wﬁﬂm—nr
RN
s/ﬁvwl—mn?+vu»wr—nﬁ—awu—vﬁ;
RN

a—»\N 2
E - ”U] —U2|| )
AM+m "

asa <b, and

(I'vi+w,a,b)—1'(v2+w,a,b),v; —v2),

5fwm—wW+vmwrwﬁ—mm—mm
]RN
—(a—D) / [Vi+w)” — (4w ] (v —w)"
RN
@b [ (@t w7 = @) ] o -
RN
;/wm—wW+vmwrwﬁ—mm—mm
]RN

< — M

2
= vV =12
m l [

as b < a, fulfilling the prophecy (4.23). O

(4.23)

(4.24)

(4.25)
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Resorting to Lemma 4.8 and Lemma 4.9 we get

Corollary 4.10. Under the hypotheses of Lemma 4.9, for fixed w € M;, I (v+ w,a,b) is
p-concave in v € Ny, i.e., for Vt € [0, 1], Yvy, v2 € Ny,

L=+ 10 +w.a.b) = S (1= Ju—vl],
>A -1 +w,a,b)+tI(vy+w,a,b). (4.26)
5. The Fucik spectrum of Schrodinger operator
5.1. Computation of critical groups Cy (I, 0)

Review the definitions of the following quantities

Fyy(w,a,b)=sup{l (v+w,a,b):veN}, 5.1
Fy(w,a,b)=inf{l (v+w,a,b):we M}, (5.2)
R; (a,b) =inf{Fy; (w,a,b) :w e M;}, (5.3)
ri(a,b) =sup{Fy (v,a,b):ve N}, 5.4)

M (a,b) =inf{Fy (w,a,b) :w € My, |w] =1}, (5.5)
my (a,b) =sup{Fy (v,a,b):ve N, |v| =1}, (5.6)

vy (a) =sup{b: M;(a,b) >0}, 5.7

wi (@) =inf{b :my (a, b) <0}, (5.8)

where (5.1)—(5.4) were introduced by [35], and quantities (5.5)—(5.8) were introduced by Cac [7]
(with some changes in notation).
Let E be a Hilbert space and f € C!' (E,R). Set Ky = {u € E: f' (u) =0} for the set of
critical points of f on E, and assume that u¢ is an isolated critical point of f on E, ¢ = f (ugp).
Recall that the g-th critical group, with coefficient group G of f at ug, is defined by

Cq (fiuo) =Hy (fNU, fCNU\{uo},G), (5.9)

where f¢={u € E: f (u) < c} denotes the sublevel sets as usual, and U is any neighborhood of
uo such that ug is the only critical point of f in f*NU, and H, (X, Y, G) represents the singular
relative homology groups with the abelian coefficient group G. According to the definition, if
(a,b) ¢ ¥ (A), 01is the only critical point of / in H! (RN), and hence we can take U = H'! (RN).
Then

C, (1.0) = H, (10, 1%\ {0}) . (5.10)

For the convenience of later discussion, an additional assumption on V (x) is presented here:
(V) V (x) is areal potential, s.t.,
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inf V (x)> —o0. (5.11)

xeRN

Lemma 5.1. Under the hypothesis (V*), if

@) A(a,b) <6,

or

(i) (V) follows, and T (a, b) < A (a, b) = 0; < oy,

then for each v € Nj, Fy; (v, a, b) can be achieved and every minimizing sequence contains a
convergent subsequence. Moreover, if A (a, b) < 0, the minimizer is unique.

Proof. First of all, we show that for fixed v € Ny, I (v + w, a, b) is coercive on M, i.e., for any
sequence {w?} "7 C M;,

I(v+w},a,b) - +o0 (5.12)
as |wl* ||m — +00. By way of negation, there exist M > 0 and a renamed sequence {wl* }jr:of -
My, s.t.

Iv+wf,a,b)<M (5.13)
as le* ”m — +00.
If A (a, b) < 6;, we have
le(v—i—w;‘,a,b)
1 1
=3 / Vo] +V (x) v + 3 / |wa‘|2 +V(x) ‘wﬂz
RN RN
a —2 b +12
1 (a0l W (Gl
1 A(a,b)
>3 [19uRevwel - oI,
2 2
RN
6r—Aa,b
O A@h) e (5.14)
26 +m) m

and so we get the boundedness of |w} | . contradicting |w} | — +oo.
In the case of A (A1,T (a, b)) < A (a,b) =6, < op, without loss of generality, assume a <
b=0; = jtg+1. We claim that 3¢; > 0, &; — 0, s.t.

) — 2 x\ 1 2 x |2
a H(v+wi) HL2 +bH(v+wi) HLz =b—e)|v+w]. (5.15)

Otherwise, 3o > 0, _lim ¢ > . Notice that |w} ”m — +o0 = |w} ”L2 —> 400, conse-
i——+00

quently, (5.14) yields
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M>—/|Vv| + V@) v+ = /|Vw| +V(x)|w|

RN RN
a —2 b +112
g1 Lt Rt (Gl
1 2 21 2 9 2
=5 [ VP4V —E(b—oz)llvlle—i—EHwi |72 = +oo. (5.16)
RN
No way! The claim is thus proved.
By (5.15) we get
*\ T 2 x\ T 2
(b—a—si))(v+wl-) ‘Lzzei (v+uw)) b (5.17)

Denote Aj41 = pg+1 With j =dimE (Aj+1), where E (MH) is the eigenspace spanned by

Ar41. Set w = tl(f:ll/fl(_?l Wi, tl(_t|_)1 >0, ‘/fl(_li_)l € E (Ai+1),

Md;+j+1 > b, an argument analogous to (5.14) shows the boundedness of |w; ;2 via (5.15), and

thus tl(fr)l — +o00. For the sake of this, 3/ e N, Vi > I,

=1, and w; € Myy;. As

(b—a—e) |7 [z =ei |37 |72 (5.18)

Vi = (,) + w[(j_)l + (,) . Obviously, y; — xp,H in H 1 ( N), wl*+1 € E (Aj+1), and hence y; —

YRS
Y in L2 (]RN) Sending i to infinity for (5.18) obtains

|| .= (5.19)
This implies wl’:_ 1= 0 a.e. on RY. On the other side, as V is a K-R potential, it follows from
(V) that A defined as a sum of quadratic forms, has a nondegenerate strictly positive ground
state, i.e., A1 is a simple eigenvalue and the corresponding eigenfunction v is strictly positive

(see Theorem XIII.48, [33]). Based on above argument, we derive a paradox that ||w,*+1 Hm
with ¥, | =0a.e.on RV,

Coerciveness of I (v + w, a, b) on M; indicates the boundedness of any sequence {wk};ﬁf C
M, s.t.

I(v+wg,a,b) — Fy(v,a,b). (5.20)

Assume wy — wy in H,}l. Notice that a convex set is weakly closed iff it is strongly closed.

And I (v + w, a, b) is convex in w € My, so the weak lower semicontinuity of 7 (v 4+ w, a, b) on

M; is equivalent to the lower semicontinuity of I (v + w, a, b) on M;. Thanks to the coerciveness
of I (v + w, a, b) on My, it follows that

I (v+wo,a,b)=Fy(v,a,b). (5.21)

Thereby, Yw € M;,
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(I' v+wo,a,b), D) :/Vwovw+/V(x)w0@

m

RN RN

—a/(v+wo)_-ﬁ—b/(v+wo)+~w
RN RN

=0. (5.22)
Secondly, we claim that
| Pr, I’ (v + wi, a, b) ||M[ = sup |(Py, ' (v+wi,a.b),9) |—0. (5.23)
peM;
lell,,=1

Indeed, for fixed v € N}, {u)k},‘i'zcxlJ is a minimizing sequence of the infimum Fy; (v, a, b),
and thus, using Ekeland variational principle, there exists a sequence {@k},jff C M;, with
lwx — will,, — 0 and

| Paa, 1" v + Wi, a, b) |, — O (5.24)
Observe that for ¢ € H,), (RV), [l¢l,, =1,

(Py,I' v+ Wi, a.b) . @),
:/VPMII’(v—i—ﬁk,a,b)VPMl(p—i—(V+m) Py, 1I" (v+ Wk, a,b) ¢
RN
+/VPM,1’(U+17;k,a,b)VPN,<p. (5.25)
RN

And by [22], it follows from Pyl (v + Wk, a,b) € Hnl1 (RN) and Py,p € H? (RN) that
Py, I’ (v+ W, a,b) APy,p € L' (RV).

Hence,
(Pu I’ v+ Wk, a,b), ¢)
:/VI’(v+Ek,a,b)VPM,<p+(V+m)1/(v+wk,a,b)'PM,(P
RN
:(I’(v—i—ﬁk,a,b),PMl(p)m. (5.26)
Consequently,

(P, I' (v + wi,a,b) — Py I' (v + Wy, a.b), 9)

= / V (wx — Wr) VPyyo + V (x) (Wi — Wi) Py
RN
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—a / [0+ w) ™ — W+ 7] Puyg
RN

—b / [0+ w)t — W+ T Pue.
RN

Notice that

W+w)” — W+ W) <— (W —wp)” < |wg — Wi,
W+w)” — W+ W)™ = (wr — Wr)~ = — |wg — Wil
W+ w)t = W+ W) < (wi — W) < lwg — Wil

W+w)t — W+ )T > — @k —we) T > — Jwg — Wil

therefore, one deduces from (5.27) that for Yo € My, |l¢|,, =1,

|(Py, 1" (v +wi.a,b) . ), |

< [(Pm, 1" (v + wi, a, b) — Py, I’ (v + ﬁk,a,b),(p)m|
+ (P, I’ (v + Tk, a,b) ,9) |

< [1+2(al + [b] +2m)] - [lwi — Wll,,
+| Py I’ W+ i a, b)),

— 0,

alluding to (5.23), % + ; =1,p>%ifN>4,and p=2if N <3.
By (5.23) we have

|(Pa, 1" (v + wi, a, b) , wy — w0>m|
= ’(I’(v—i—wk,a,b),wk — w())m’ — 0.

It might as well assume a < b. In (5.22), taking w = wy — wy yields

0« (I'v+wk,a,b) —I' (v+wo, a,b), wi — wo)

m

= / IV (e — wo) > + V (x) (wi — wo)* — a |lwe — woll?,

RN

-b-a) / [V +w)T — @+ wo) ] (wp — wo)
RN

> [ IV (g — wo) 2+ V () (g — w0)? — b g — woll2s

RN
0 —b
0 +m

2
> lwe — woll;,, »

7031

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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which implies that w; — wg in H,il (RN) as b < 6. If b =26 <op, set wy — wy =
PE(AM) (Wi — wo) + Py, (wr — wo), (5.34) obtains

0<—<I/(U+wk,a,b)—I/(v+w0,a,b),wk—w0)m

2 2
> / ‘VPE(A,H) (wi — WO)‘ +V (x) ‘PE(A,H) (wi — wo)‘
RN

2
L2

b H PE(?»1+1) (wg — wo)‘

+ / IV Pag, (i — wo) P+ V () | Py, (i — wo)
RN

b Pr, (i = w0) 2

> (1artjr1 = b) | Papsy (i —wo) |22, (5.35)

and this gets
Py, wi — Py, wo in L2 (RN ) . (5.36)

Note that wy — wq in H,}l (RN) — wy — woin H' (]RN) (see Lemma 9.3), so we have

/ PE(p11) WP = / Pi (3, w09, Vo € L? (RN) : (5.37)
RN RN
and hence,
Pea) k= Prfupyo in 17 (RY). (5.38)

(5.36) together with (5.38) derives
wi — wo in L2 (RN ) , (5.39)

and this shows wy — wo in H) (RV) by (5.34).
Finally, uniqueness follows directly from (4.19). The proof is complete. O

Set/ (v+1(,a,b),a,b)= Fy(v,a,b), t(v,a,b) € M;, we have
Lemma 5.2. Under the hypothesis (V*), if A (a, b) < 0y, then t (v, a, b) is continuous on v € Nj.

Proof. Without loss of generality, assume a < b. Let v, — vg in N;. Notice that
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02(1/(vn+r(vnvavb)aa’b)_1/(v0+f(v0’a7b)ﬂaﬂb)aT(vrhavb)_T(UO’aab))m

= f IV (t (vn, @, b) — T (vo, @, b)) > + V (x) |7 (vn, a, b) — T (vo, a, b)|*
RN

—a |t (vg.a.b) — T (vo,a, )13,

- (b _a) / (vn +T (vnaaab))+ : (T (vn»a’b) -7 (UO’a’b))
RN

+(b—a)/(vo+r(vo,a,b))+~(r (vp,a,b) — 1 (vo,a, b)), (5.40)
RN

and
(Un + T (Vn,a, b)) — (vo + 7 (vo,a,b)) "

= (vn — V0 +7 (vrhav b) -7 (v()’ a, b))+

= (Un —U0)++(T (Un,a,b)—f(v(),a,b))—‘r, (541)

and also

(U + T (n, a,b))" = (vo + T (vo, @, b)) "
> — (UO — Un +T (vOa a, b) -7 (Una a, b))+

> (vp —v0)” + (T (vn,a,b) — T (vo,a,b))", (5.42)

we yield

0> / IV (t (g, @, b) — T (v0,a, b)) > + V (x) |t (v, @, b) — T (vo, a, b)|*
RN

—b It (vn, a,b) — T (vo, @, b7,

- (b - a) / (Un - UO)+ : (f (vna a, b) -7 (Uo’a, b))+
RN

- (b _a) / (vl’l - UO)_ : (7: (vn’avb) -7 (UO,(Z, b))_

RN
6, —b
> 91’+m 1T (v, a, b) — © (vo, a, b)II2,
-2 (b —Cl) ”Un - U0||L2 . ”T (Un»avb) -7 (U()va’b)HLZ ) (543)

and thus
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2;2 |7 (un. @ b) — 7 (vo. @, b)IIZ
<2(b—a)llva —voll - I (vn, a,b) — T (vo, a,b)|
<4®—a)llva —voly - It (vn,a,b) — 7 (vo,a,b), (5.44)
showing
0 +m

It (n,a,b) — 7 (vo,a, D),y =<4 (b —a) o lve —vollw — 0, (5.45)

—b
and consequently we arrive at the conclusion as desired. O

Proposition 5.3. Under the hypothesis (V*), for (a,b) ¢ X (A), if A(a,b) <6y or T (a,b) <
A (a,b) =6; < op, then

C,(1,0)=0,Vg >d; + 1. (5.46)

Proof. If A (a, b) < 6;, by Lemma 5.2, the proof is quite similar to that of the second half of The-
orem 1.1(i) of [32]. In the case of I" (a, b) < A (a, b) = 6; < 0y, it is no harm in supposing a < b.
Denote I = I (a,b). As (a,b) ¢ £ (A), an argument analogous to the proof of Theorem 3.4
shows that for ¢ > 0 suitably small and Vb* € [b — ¢, b], (a, b*) ¢ T (A) and thus [ (a, b*) sat-
isfies the (PS) condition. Therefore, we conclude (5.46) by Proposition 9.4 (see Appendix). The
proof is complete. O

Lemma 5.4. Under the hypothesis (V*), let
(I"(uj,a,b),w) =0,Ywe M, j=0,1, (5.47)
whereu; =v+wj;, ve N, w; €My, j=0,1LIf
(@) A(a,b) <06
or
(i) (Vo) follows, and I (a, b) < A (a,b) =6; < 0o, and 3j € {0, 1}, u; solves (1.3),

then wi = wy.

Proof. If A (a, b) < 6;, the conclusion follows directly from (4.19) and (4.20) so we focus on
the second case. In view of (ii), we assume that (1.3) is solved by uy, i.e.,

I (ug,a,b)=0,1(ug,a,b)=0. (5.48)
Observe that
0=(I'(ur,a,b) —I' (o, a,b), w)

= / IVwI2 +V(x) w2dx —a(uf —uy, w)Lz — b(ul+ — ug, w)L2 , (5.49)

RN

where w = w; — wo, we have
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(b — ra+1) (”T —ug » w>L2 + (@ — pg+1) (”1_ —Ug w>L2

= / IVwl* + V () wdx — g1 llwll?, > 0. (5.50)

RN

On the other hand, as (u} — ug, w);» >0, (u] —ug, w),, >0, we obtain

(b — ta+1) i —ug, w)LZ + (@ = ta1) fuy —ug, w)LZ =0. (5.5D)

By employing (5.50) and (5.51)

/ Vw2 + V () widx = g ol (5.52)
RN
and then w € E (/,Ld[+]).

Notice that A (a,b) =0 = pg+1 < oo and a + b < 26;, there is no harm in assuming a <
b = 6;. The combination of (5.50) and (5.51) leads to

(u; —uy, w)Lz =0. (5.53)

Define

le{xeRN:uo(x)EO,ul(x)ZO

|
522:{xeRN:uo(x)ZO,ul(x)SO};
523:{xeRN:uo(x)fO,ul(x)EO};
94:{xeRN:uo(x)SO,ul(x)SO}.
Hence, (5.53) yields
0={uy —ug,w)

=/M1(M1 —uo)—/uo(ul —M0)+/(M1 — up)?. (5.54)

Q2 Q3 Q4

Suppose to the contrary that w # 0. Notice that fQi (”1_ - ua) w > 0, we deduce [24] = 0.
Otherwise, w = 0 a.e. on Q4. An argument analogous to (4.19) shows w € E (,lLd[+]). As

N

Ve leoc (RN), by unique continuation theorem (see [17], [18], [30]), w = 0 on R¥ (there

is an extensive literature on unique continuation and we refer the readers to [12], [13], [19],

[39], [40], and so forth). However, this contradicts the hypothesis w # 0. So if |Qf| > 0, then
4

|22 U Q3] >0, Q‘l = |J ;. It might as well assume [Q2;] > 0, |Q3] > 0. It follows that u; =0
i=2
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a.e. on 7 and g =0 a.e. on Q3. Once again from unique continuation, ug > 0 a.e. on €27, and
up > 0a.e. on Q3.
Above argument indicates that u; > 0 a.e. on RN as |Q4| = 0. Thus,

(I'(wo.a,b),v), = / Vo> + V (x) vidx — b |3, =0, (5.55)

RN

which alludes to v =0. By (5.47),

(' wo. a. b, wo), = [ [Vwol® +V (x) |wol* dx — b |woll 7, =0, (5.56)
RN

(1’(u1,a,b>,w1)m=/|Vw1|2+V(x>|w1|2dx—b||w1||§2:o, (5.57)
RN

and this yields ug, u; € E (iq+1), and consequently u; L. Since ug = O a.e. on 23, and u; =0
a.e. on 2, unique continuation shows that o = u = 0 on R¥, contradicting w #0. O

Remark 5.5. It seems that the assumption analogous to “3j € {0, 1}, u; solves (1.3)” of
Lemma 5.4(ii) is nonredundant for us in some cases. Indeed, for v = ¢, ||¢; ||H(} =1, we can
always choose ty > 0 sufficiently small such that for Vz € [0, 9], ¢1 + t@14+1 € (ﬁ)o, where ¢
and ¢; denote the eigenfunctions of the first eigenvalue 1 and the [ + 1-th eigenvalue 3:1+1 of
— A with Dirichlet boundary condition and restricted on a bounded smooth domain €2 C R¥, and
-1l | Tepresents the norm of HJ (), and (P)° is the interior of

ou

Igzclosure{u €Cy(R):u>00nQulye=0, 5
v

|aQ < 0} .
Set w; = tg;+1, and take b :5:1+1, hence, for v = ¢, Vi € Ml,

/V(v—i—w,)VfE—a/(v+wt)_ﬁ—b/(v+w,)+w
Q Q

Q

=/thvw—il+1fw,w=0, (5.58)
Q Q

where Ml is the orthogonal complement in HO1 (9) of 1/\71, and 1/\71 stands for the subspace spanned
by the eigenfunctions corresponding to Ap, - - , As.

Lemma 5.6. UndeNr the hypothesis (V*), assume (14,41 < 0o, and my1 (a,b) <O0. If
(i) A(a,b) <641 :=T (1dy,,+1.00);
or
(i) (V) follows, and T (a,b) < A (a,b) = 5;+1 < 0y, ~
then (a, b) ¢ X (A). In addition, if Ay < T (a,b) < A (a,b) <011, then Cy4 (1,0) = 844,,,G.
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Proof. By way of negation, there is a ug = vg + wo # 0, vg € Nj+1, wg € My, such that (1.3)
holds. By Lemma 5.1 and Lemma 5.4,

Faiq1 (vo, a,b) =1 (vo + wo, a, b) =0. (5.59)

If vg # 0, we may assume ||vo||,, = 1. This implies that m;4 (a, b) > 0, contrary to assump-
tion. If vg = 0, then wo # 0 and

~

+1—a ”

9 01 —b
I (ug,a,b) =1I (wo,a,b) > S

— w17 (5.60)

_2
Wo ||L2 +
If Aa,b) < 51+1, this will be positive, contradicting (5.59). If A (a, b) = 9~l+1, assume b = §Z+1,
then wo > 0 a.e. on RY, and thus wo-Ly1. This shows wy = 0, violating wg # 0. The second half
of Lemma 5.6 follows directly from Theorem 1.1(iv) of [32]. O

Lemma 5.7. Under the hypothesis (V*), if

@) T (a,b) > ¥

or

(i) (V) follows, and 1 < T (a,b) = ; < A (a,b),

then for each w € Mj, Fy; (w, a, b) can be achieved and every maximizing sequence contains
a convergent subsequence. Moreover, if I (a, b) > A;, the maximizer is unique.

Proof. We first show that for fixed w € M;, I(v + w, a, b) is anticoercive on Ny, i.e., for any

v*

; — 400, I(vj + w, a,b) — —oo. Otherwise, there is a renamed

sequence {vj‘} e Ny,

*

m
sequence v;’.‘ €Ny, H v; H — 400, I(v}‘f +w,a,b) > —n,and n > 0.

(i) T (a, b) > 4. Thereby,

2
*

— vj

[(a,b) —NM
PR
2 (A +m)

T (a,b)
2

1
+3 / Vwl? 4V () fwf? - w2, (5.61)
]RN

and then derives the boundedness of ‘ v;‘ , violating the hypothesis.
m

(@) 21 <T(a,b) =1 < A(a,b). Assume a = A; < b. An argument analogous to (5.15)
shows that 3p; >0, p; — 0, s.t.

(s5+) ] +o) (5 +w)

Set v;’f = EJ- + t,(j)lﬂl(j), tl(j) > 0, 1/f1(j) € E(\), H ‘/’l(j)H =1, and '17]- € N;_1. Denote mg =
m

2 2

2
. (5.62)
L2

*
vj—i—w’

a :(a+,0.,~)‘

+b‘
2

L L?

dim E (A;). Observe that pg—,, < a as [ > 2, it follows that ||Uj ||L2 is bounded, and thus tl(j) —
+00. On this account, 3J e N, Vj > J,
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2

=0 Hz; (5.63)

2
L2’

(b—a=p)) |

zj = t:% + gﬁf” + t;% Clearly, z; — ¥;* in H,) (RV), y;* € E (%), and hence z; — ;" in
L*(RN). Let j — +o00, (5.63) yields

—0. (5.64)
L2

H (vi)"

This implies ¥ <0 a.e. on RY, contradicting the fact that y; has a constant sign on R" .

Anticoerciveness of I (v + w, a, b) on N; indicates that any sequence {v;‘} C N such that

I(v’}—}—w,a,b)—)Fu (w,a,b), (5.65)

*

|

v*| is bounded, and dim N; < +oo alludes to the convergence of subsequence. Uniqueness
m

comes from Lemma 4.9, ending the proof. O

SetI (6 (w,a,b)+w,a,b)=Fy(w,a,b), 6 (w,a,b) e N;, we have

Lemma 5.8. Under the hypothesis (V*), if T (a,b) > A;, then 0 (w,a,b) is continuous on
w e M.

Proof. Without loss of generality, assume a < b. Let w, — wq in M;. Observe that
OZ(I/ (9 (le! a9b) +wn1a9b) - ]/(9 (w()vavb) + wo, a, b)vg(wnvavb) _Q(w()’ a’b))m

= / IV (6 (wn, a,b) — 0 (wo.a, b)) >+ V (x) |0 (. a, b) — 0 (wo, a, b)|?
RN
—a 0 (wn, a,b) — 6 (wo, a, b3,

_(b_a)/ [(9 (wllvaﬂb)+wn)+_(9 (w07a’b)+w0)+]

-(0 (wn,aﬂfb) — 0 (wo,a,b)). (5.66)
By
(6 (wy, a, b) + wy)™ — (6 (wo, a, b) + wo)™
> (0 (wp,a,b) — 0 (wo,a,b))” + (w, —wo) ™, (5.67)
and

(9 (wnv a, b) + wn)+ - (9 (U}(), a, b) + U)())+
< (6 (wp,a,b) — 0 (wo,a,b))" + (wy, —wo) ™", (5.68)
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therefore, (5.66) is reduced to

a— A
M +m

16 (wn, a, b) — 6 (wo, a, b) |12,

=—((®b-a / (wn — o)™ - (6 (wy, a,b) — 6 (wo,a,b))™

RN
~(b—a) / (wn = o)™+ (8 (wn, @, b) — 6 (wo, a, b))
RN
=4 —a)llwn — wolly, - 10 (wy, a,b) — 6 (wo, a, bl , (5.69)

and further derives

A +m

!
16 (W, a, b) — 6 (wo,a,b)|l,, <4 (b —a) Py

lwy, — woll,, — 0. (5.70)

The assertion follows. O

Proposition 5.9. Under the hypotheses of Lemma 5.7, if A (a, b) < og, (a, b) ¢ £ (A), I (a,b) >
Moriy <T'(a,b) =1 < A(a,b), then

C,(1,0)=0,Yg <dj — 1. (5.71)

Proof. The combination of A (a, b) < og and (a, b) ¢ X (A) determines the compactness of
in terms of Theorem 3.4. If I" (a, b) > A;, by Lemma 5.7 and Lemma 5.8, (5.71) follows directly
from the proof of the first half of Theorem 1.1(i) of [32]. An argument analogous to the proof of
Proposition 5.3 deals with the case A1 <" (a,b) =X < A(a,b). O

Lemma 5.10. Under the hypothesis (V*), let
(I"(uj.a,b),v), =0,Yve N, j=0,1, (5.72)

whereuj=v; +w, we M, v; € N, j=0,11If
(@) T (a,b) > A
or
(i) (Vo) follows, and &y < T (a,b) =X; < A (a,b), and 3j € {0, 1}, u; solves (1.3),
then v| = vyg.

Proof. Mimicking the proof of Lemma 4.9 and Lemma 5.4 we arrive at the statement (i) and
(i) respectively.

Lemma 5.11. Under the hypotheses of Lemma 5.7, if M;(a,b) > 0, then (a,b) ¢ X (A). In
addition, if g +1 < oo and Ay < T (a,b) < A(a,b) <041, then Cy (1,0) =644,G.

Proof. Suppose to the contrary that Jug = vg + wo # 0, vo € N, wg € M;, such that ug solves
(1.3). Evidently, wg # 0. Set ||wol|,, = 1, by Lemma 5.10,
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Fii (wo,a,b) =1 (vo+ wo,a,b) =0, (5.73)

violating M; (a,b) > 0. The second half of Lemma 5.11 originates from the proof of Theo-
rem 1.1(31i1) of [32]. O

Lemma 5.12. Under the hypothesis (y*), assume fLg,+1 < 00, if
(D pgy, <T(a,b) <Aa,b) <041,
or
(2) (Vo) follows, and g, =T (a,b) < A(a,b) < 51+1,
then (i) Myy1 (a, b) > 0; (i) (a,b) ¢ T (A); (ii)) Cy (1,0) =644, G.

Proof. Notice that Vw € Mj1, ||w],, =1,

Fiyyi(w,a,b)= sup I(v+w,a,b)

VEN 41

> 1 (w,a,b)

SEECLIWR (5.74)
We deduce from (5.74) that

M1 (a,b) >0 (5.75)

and this gets (i). An argument analogous to that of Lemma 5.11 derives (i7). (iii) still follows
from the proof of Theorem 1.1(ii) of [32] for the case (1) while the identical consequence is
concluded by Proposition 9.4 with respect to the case (2). O

Proposition 5.13. Suppose (V2). Under the hypothesis (V*), if pg+1 < 00 and pigy,,+1 < 00,
Mdy, < T (a,b) < A(a,b) = way+1, then (i) My (a,b) > 0; (i) (a,b) ¢ X (A); (iii)
Cy(1,0)=644,,G.

Proof. Without loss of generality, assume jig , < a < b = g, ,+1. Clearly, (5.74) shows

M1 (a,b) > 0. Argue by contradiction, M; 1 (a,b) = 0. As g, 11 is an eigenvalue of A,
set (bd,,, = Mdy,,+1, by Lemma 5.16 below, 3w € M4y, |wll,, =1,

0= M1 (a,p,de)
=1 (9 (w, a, “d1+2) tw,a, Md1+2)
21(9 (w,udm,,udm)+w,a,ud,+2). (5.76)

Set ¢ =6 (w, iay s, Hdyy,)- We now claim that
I(C +w’a’Mdl+2) > I(é‘ +w, /~’Ld1+27 ,udprz)‘ (577)
If not, we yield

| +w)~|,.=0 (5.78)
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and derive ¢ # 0 accordingly. Observe that <I’ (;“ + W, dp, [Lde) , 'J)m =0 for Vv € N4, we
obtain

a 12125 = f V2R +V (002 = gy 121125 (5.79)
RN

and this indicates ¢ = 0, conflicting with ¢ 5 0. The claim is thus proved.
Consequently, a self-contradictory inequality

0= M (a, “d1+2) >1 (§ T W, Udjyss Mdz+2) =1 (w, Mdpyos “de) =0 (5.80)

arises from the combination of (5.76) and (5.77). That’s the precise statement (7).
A standard argument gets (ii). Notice that ug,,,+1 < oo via Theorem 3.4 alludes to the (PS)
condition, by Proposition 9.4 and Lemma 5.12(ii), we arrive at (iif). The assertion follows. 0O

Lemma 5.14. Under the hypotheses of Lemma 5.7, if A (a, b) < 6;, then (1) m; (a,b) < 0; (2)
(a,b) ¢ £ (A); (3) Cq(1,0) =644,G.

Proof. Observe that (2) and (3) directly follow from (1) in view of Lemma 5.6 and Proposi-
tion 9.4, so we focus on (1). If T (a, b) > A;, according to the definition, for Vv € Ny, |[v]|,, =1,

1 b
rwab=3 [ 9P +v@eR =5 v lh -3 vl

RN
_M-T@bh

<= Iz <0, (5.81)

and hence F7; (v, a, b) < 0. We can always choose {v,,}:‘fl> C Ny, lvpll, =1, st

le (vnaa’b)%ml (a5b)' (582)

+0oo

As dim N; < 400, there exists a renamed subsequence {v”}nzl’

Using Lemma 5.2, we have

v, —> v € Ny, flvoll,, = 1.

Fy (vo,a,b) =my(a,b). (5.83)

If T (a, b) = Ay, it is no harm making the hypothesis a = X; < b. We show that (5.81) follows
for Vv € Ny, ||[v|l,, = 1. Otherwise, Iv* € Ny, [[v*||,, = 1,

0=1(v* a,b)< % / IVo*[ + v (x) [v*] — % |v*[7, <o. (5.84)

RN

Therefore, (5.84) yields

f|Vv*|2+V(x)|v*|2—kl |7, =0 (5.85)

RN
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and || (v*)+||L2 = 0, indicating that v* is an eigenvector of A; with v* <0 a.e. on R¥. Since
v* LYy, we get v*¥ =0 a.e. on RV, contradicting v* # 0. The lemma is thus proved. O

Proposition 5.15. Suppose (V,). Under the hypothesis (V*), if \; < T (a,b) < A(a,b) =6; <
00, then (i) m; (a, b) < 0; (ii) (a, b) ¢ T (A); (ii)) Cy (I1,0) = 6,44,G

Proof. For fixed v € Ny, set ||v],, = 1, we obtain

a— A

I(w.ab) <——_"" 5.86
.a,0) == (5.86)
and thus
(@.b) <-4~ (5.87)
m;(a,b) < ————. .
! 2 (M +m)

By employing Lemma 5.6 we get (ii). Due to 6; < oy, (ii) derives the (PS) condition. The
combination of Proposition 9.4 and Lemma 5.14 determines (iii). O

5.2. Minimal and maximal curves

In this section we construct the lower and the upper curves emanating from (A;, A;). Aiming
at this problems, we furnish some lemmas adapted to our needs. For the sake of convenience, in
what follows, we assume:

(Vo) Let V be a K-R potential and suppose (V2) holds, ogis (A) # &, info (A) = infogis (A),
il € ouis (A), 0ais (A) N [1, At ] = adZ], 1= 2, .6, 0 = =info (A) < dp <+ <

Al+1 < 00.
Define
Q,+ {(a b)€R? 13 =T (@.b) = A(@.b) <841 =T (g +1.00) |
={(a.b) € 0,1 : M; (a,b) =0} ;
={(a,b) € O}y :mi41 (a,b) =0};
{(a b) e QI-H M=<a <Al <b§§[+1};
B.={(a.b)€ Q1 : M <b<hyi<a<0O};
D= {(a b) €R?:T (a, b)>Al}

={(a,b)eR2:A1SF(a,b)sA(a,b)<c70};
D}, ={(a,b) e D: M (a,b) > 0};
DY ={(a,b) € D: M (a,b) =0};
D,,={(a,b) e D:M;(a,b) <0};

={@b eR:—00 < @.h) = A@b) =T}
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Fl ={(a,b) € F:m (a,b) > 0};
Fp={(a,b) € F :myy (a,b) =0};
F, ={(a,b)e F:my4i(a,b) <0}.

Without the hypothesis of compact embedding, the following lemma considerably improves
the conclusion of Lemma 3.8 of [38] (see also Lemma 7.3.8 of [36]):

Lemma 5.16. Under the hypothesis (Vy), if A (a, b) < 0o, M; (a, b) <0, then there is a wyg € M|,
lwoll,, =1, s.2.

Fy (wo,a,b) =M, (a,b). (5.88)

Proof. Without loss of generality, assume A (a, b) > u1. Suppose ogis (A) N [u1, A (a,b)] =

{ki}le, s >1+41, and let E;_; be the eigenspace spanned by A;y1,- -, Ag. In view of (5.5),
there is a sequence {wk},ji? C My, s.t., lwgll,, =1, and

Fiy(wg,a,b) — M (a,b). (5.89)

Let wy — wo in H,} (RY). We claim wg # 0. Otherwise, set wy = Pg,_,wi + Py, wy., then

we obtain Pg,_,wi — 0in L? (RV).
Observe that

1 b
Fu (wg,a,b) = 5 / IVwe)? 4+ Vw} — % |w; ||i2 -3 wi ||i2, (5.90)
RN
hence,
2Fy (wi, a,b) = (vt — A (@, b)) - || Pr, wi |3

+ (0 — A @ D) - | Pu w3, (5.91)

where 0, =T (1dy+1.00). If My (a,b) <0, (5.91) is self-contradictory as | Pg,_,wi,» — 0.1f
M (a,b) =0, (591) gets

| Py, wie|| ;2 — 0. (5.92)
indicating ||wi |l 2 — 0. Consequently, the contradiction manifests by
1= wglly, < (A (a,b) +m) [lwell, + 2Fy (i, a, b) — 0 (5.93)

and the claim is verified accordingly.
For fixed k € N, Vv € N;, we have

I (v+wg,a,b) < Fy(wg,a,b). (5.94)

Notice that for fixed v € N;, I is weakly lower semicontinuous on M;, and thereby,
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I (v+wp,a,b) <M(a,b). (5.95)

~_ v ~ .. 2
Setv = ool W0 = Tl Divide (5.95) by [lwoll;,

M (a, b)

1@+ Wo.a,b) <~
lwoll?

) (5.96)

yielding

M (a,b)

M; (a,b) < Fy (o, a,b) < 5
llwolls,

(5.97)

and this shows that if M; (a, b) < 0, then ||wo]|,, = 1, alluding to wy — wop in Hnll (RN). We
conclude the proof as required. O

Lemma 5.17. Under the hypotheses of Lemma 5.16, if (a, b) € Bl(‘),,\ (M+1, Mi41), then (a,b) €
B* or (a, b) € B,.

Proof. For fixed (ao,bo) € O, ;\(B*U By), if ag # by, then (T (ao,bo), A (ao, b)) N
o (A) =d. Let (ag, bo) # (Ai+1, A1+1). We are confronted with the following cases:

(D A =T (ao, bo) < A (ao, bo) < A1

(i) A (ao, bo) < Ait1.

Observe that for ¢ € E (Aj+1), W € Myy1, llo +wll,, =1,

- 1 2 2, 1 ~ 02 ~>
1(<ﬂ+w,ao,bo)=§ IVol"+V (x) e +§ [Vw|*+V (x)w
RN RN
ao ~_12 bo ~ 2
—7/!(¢+w> | —3/|<¢+w)+\
RN RN

1 S RV SO
= 5 [M1 = A a0, bo)] - gl + 5 [61+1 = A (a0, bo)] - 1117
> 0. (5.98)

One deduces from (5.98) that
M; (ao, bo) = 0. (5.99)

If M; (ao, bp) =0, by Lemma 5.16, Jwg € M, |lwoll,, = 1, F11 (wo, ag, bo) = 0, contradicting
(5.98).

(i) A (a0, bo) = Ai+1.

In case that M; (ao, bo) = 0, again by Lemma 5.16, Jwj € My, |w§|, =1, Fu(w, ao,
bo) = 0. Set wi = ¢ + Wy, 95 € E (A+1), W5 € My 1. Evidently, w; = 0. Therefore, the con-
tradiction manifests by

A a _12 b, 2
0=1 (g5, a0.b0) == sl 72— 5 | (@) | L — 5 | (w0

>0 (5.100)

due to the facts ap < A4 and @5 L.



C. Li, S. Li/ J. Differential Equations 263 (2017) 7000-7097 7045

(2) 41 =T (a0, bo) = A (ao, bo) = §z¢1.
Take account of the case A (ag, bo) < 6;4+1. By Lemma 5.12, we get

M1 (ao, bo) > 0, (5.101)
and
Cyq (Iag.bp)» 0) = 844y, G, (5.102)
where Iy, b,y (0) =1 (u, ag, bp).

We claim M; (ag, bg) < 0, or else invoking Lemma 4.9, Corollary 4.10, and Theorem 1.1(ii)
of [32], we obtain

Cy (Lag.bo)> 0) = 844/ G, (5.103)
contradicting (5.102). The claim is proved.
Consequently,
M; (ao, 51+1) < M (ap, bp) <0 (5.104)
if ag < bg < 514_1 and
My (Br41, bo) < M (ag, bo) <0 (5.105)

if bg < ag < 0141, and thus M, (5;+1, 51+1) < 0. The conclusion follows. O

Lemma 5.18. Under the hypotheses of Lemma 5.16, if (a, b) € DY ,(@a,b) > orix=a<
Mi+1 < b, then for Vb € [A;, D), Yby € (b, 0p), (a,by) € D;[, (a,by) € Dy,.

Proof. Notice that for Vb < b,

M, (a,b): inf Fy; (u),a,i;)

weMy,|lwl,=1

= inf sup I(v~|—w,a,l;)

weMy, lwln=1yep,

v

sup I W+ w,a,b)=M;(a,b). (5.106)

weMy, lwln=1yep,

By way of negation, b e (A, D), M; (a, 5) = 0. Based on Lemma 5.7 and Lemma 5.16,
Jw e My, |w|,, =1, s.t.

1(60(W,a,b)+W,a,b)=Fi (W,a,b) =M (a,b). (5.107)
A standard argument yields
I (9 (W,a,b)+ w,a,E) >1(0(W,a,b)+w,a,b). (5.108)

Therefore, the absurd assertion occurs as
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0= Fy (@,a,b) > Fi (#,a,b) > M (a,b) =0. (5.109)
Likewise, we get the second half of Lemma 5.18. O

Lemma 5.19. Under the hypothesis (Vo), if M (a, b) > 0, A (a, b) < 00, then there exists 20 > 0,
Vbelb—7%y,b+7¢y], M; (a, b) > 0.

Proof. Suppose to the contrary that 35 € R, by — b, M; (a, b) < 0. Employing Lemma 5.16,
Jwi € My, wiell, =1,

Fu (wi, a, by) <0. (5.110)

Assume wy — w* in M;. A trick mimicking the proof of Lemma 5.16 gets w* # 0.
Observe that for fixed v € N},

~ |Ek—b| 2 1
|1 (v+wk,a,bx) — I (v+wk,a,b)| < 5 ||v||L2+m — 0. (5.111)

by—b
Set g = | kz | (IIvIIi2 + AMﬁ),then we have

I (v+wg,a,b) <e (5.112)
and an argument analogous to the proof of Lemma 5.16 yields
I(v—i—w*,a,b)gO. (5.113)
Set [|w*||,, = 1, we obtain
M (a,b) < Fy; (w*,a,b) <0, (5.114)
violating the hypothesis M; (a,b) > 0. O

Proposition 5.20. Under the hypotheses of Lemma 5.16, if (a,b) € Dgl\()\,l+1, Mi+1), then
(a,b) € L (A).

Proof. Argue by contradiction. Then there exists g9 > 0 small enough, (a, b*) ¢ X (A) for Vb* €
[b — &g, b + gp]. Take two cases into account:
@) T (a,b) > A
Employing Lemma 5.17, we get I (a,b) < Aj11 < A(a,b). By Lemma 5.18, for Vb €
[b —¢e0,b),VYby € (b, b+ &), M; (a,by) >0, M (a, by) <O0. Invoking Lemma 5.11,
Cq (Ia,p—s), 0) = 844,G. (5.115)

Similar to Theorem 1.1(iii) of [32], we obtain

Cay (I b0y 0) 0. (5.116)
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However, by Proposition 9.4,

Cy (Itab—0)-0) = Cy (Iiabten): 0) - (5.117)

contradicting the combination of (5.115) and (5.116).

(i) T (a, b) = A;.

(1) a=x <b.

Again by Lemma 5.18, M; (A7, by) > 0, M; (A1, b2) <0, for by € [b — &9, b), by € (b, b+ &0].
Arbitrarily choose b} € [b— &9, b), b5 € (b,b+&p]. An argument analogous to that of
Lemma 5.19 indicates that 3¢* > 0 sufficiently small, s.t., for Va € (A, A; + &*], M; (@, b}) > 0.
Notice that (@, b}), (a,b5) ¢ = (A) and M; (a@, b5) <0, a standard argument derives a contra-
diction

12

G=c, (I(M,bf), 0) ~ ¢y, (I(M,b;), 0) 0. (5.118)

2)b=x1<a.

Repeating the proof procedure of Lemma 5.18 shows that 3¢ > 0 suitably small,
M (@, b) >0, M; (az,b) <0, for Va; € [a —%,a), Ya, € (a,a +¢€]. Fully imitating the trick
furnished by (1), we conclude the proof. O

Lemma 5.21. Under the hypotheses of Lemma 5.16, if (a;, b;) € Dg,,, ay < ay, then by > by.
Proof. If not, hence, by Lemma 5.16, 3w € M;, |wl],, =1,

0=M,;(ar,b1) = Fy (w,ay, by)
=sup I (v+ w,ar, by)

vEN]

>sup I (v4+w,az, b)) =Fiy(w,az, by). (5.119)

veN;

Due to M; (az, by) =0, we get

sup I (v+ w,asz, b)) =0. (5.120)
veN;

Thus, by Lemma 5.7, 30 (w, a2, by) € Ny,

0=1(@(w,az,b2)+w,az, bs)
<10 w,az,b2)+w,ay,by)
<1 w,a1,b1)+w,a1,b)=0, (5.121)

and this yields
|6 (w.az, b2) +w)~ |, =0. (5.122)

Observe that w # 0 = 6 (w, az, by) # 0. On the other side,
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A ||e<w,az,bz>||izz/|ve<w,az,bz)|2+V<x)|9<w,az,bz>|2
RN
=Dy 10 (w, a2, b2) 132 = Ay 10 (w, a2, b)I3 2 (5.123)

indicating that 6 (w, ap, by) is an eigenvector of A; = by. Set & =6 (w, az, bp) +w. As& >0 a.e.
on RY and £ Ly, one derives £ = 0. Out of the question! The conclusion follows. O

For fixed a € [A;, 00), if there exists b € D, s.t., (a, b) € D;{,I U Dg,,, we denote
~ _ . + 0
u,(a)_sup{b.(a,b) c DMUDM}.

Lemma 5.22. Under the hypothesis (Vy), if (a,b) € D, then b =7, (a) <= (a,b) € D%.

Proof. “=" is determined by the combination of Lemma 5.19 and Lemma 5.24 below, and
simultaneously Lemma 5.18 offers a powerful guarantee to “<”. O

Denote
D*={(a,b) e D: ) <a <1 <b};

Dy={(a,b)eD: A\ <b=<Ay Za}.

Theorem 5.23. Under the hypothesis (Vy), V; (@) is continuous on a € [Al, )»[4_1] as (a,v; (a)) €
D* and also on a € [)Ll+1 ,00) as (a,V; (a)) € Dy.

Aiming at Theorem 5.23, we prove two lemmas below adapted to our needs:
Lemma 5.24. Under the hypothesis (Vy), M; (a, b) is continuous on (a, b) € D.
Proof. Without loss of generality, assume that (a,, b,) € 5, (an, by) — (a,b), and a < b. Di-
vide the proof into three cases:

(1Y b>a > A

We prove that for fixed w € M, |wl|,, =1,

Fi(w,an, by) - Fiy(w,a,b). (5.124)
Since

Fi(w, an, by) = Fiy (w, A(a,b) +¢,A(a,b) +¢) > —00 (5.125)

for n large enough and ¢ > 0 suitably small, an argument analogous to that of Lemma 5.7 derives
boundedness of |6 (w, a,, by)||,,,- With the aid of boundedness of ||6 (w, a,, b,)||,,, we deduce
from dim N; < +o0 that there is a subsequence {9 (w an;, bnj)};_:;,

0 (w, an; . ba;) > v* in Hy NN, (5.126)
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as j — 400, and then

1 (9 (w,anj,bnj) + w,anj,bnj) — 1 (v* +w,a, b). (5.127)
Consequently,
16 (w,a,b)+w,a,b)
= lim [ (0 (w,a,b)+ w,anj,bnj)
Jj—>+00
< 1 I(v+w,ay,,,by,.
=l sup (v bny)
- jgl—}—lool (9 (w, a,,j,bnj) +w, ay;, b,,j)
=I(v*+w,a,b)51(9(w,a,b)+w,a,b), (5.128)
so we have
Fu (w,an_,.,b,,_l.)—> Fiy(w,a,b), (5.129)
alluding to (5.124). Hence,
lim M;(ap, b,) < lim Fy(w,ay,by) = Fi(w,a,b), (5.130)
n—+00 n——+00
and this yields
lim M (a,,b,) < Mj(a,b). (5.131)
n—-400

On the other side, in view of definition, for ¢, > 0, &, — 0, 3w, € My, ||w,|,, =1, s.t.
M; (an’bn)zFll (wn:anvbn)_gno (5.132)
We claim that

lim |Fy (wp, ap, by) — Fiy (wy, a, b)| =0. (5.133)
n—-+o0o
Indeed, observe that
{1, (0 (wy, an, by) + W, an, by) = 1, (0 Wy, a, b) + Wy, a,b) .0 (wy, an, by) — 6 (wn, a, b)),

= / IV (6 (W, @n, byp) — 0 (y, a, b))|> + V(0 (wn, an, by) — 6 (wn, a, b))>
RN

—af(9(wn,an,bn)—9(wn,a,b>)2
RN
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—(b—a) / [(9 (Wn» @ns by) + wa) " — (6 (w. a,b) + wn)+]
RN
: (9 (wn:an’ bl’l) —0 (wn’ a, b))

—(ay _a)/ (0 (Wn, an, by) +wy)™ - (0 (Wy, an, by) — 0 (wy, a, b))

RN
—(bn —b) / 0 (wy, an, by) + wn)+ (0 (wy, an, by) — 6 (wy,a, b)), (5.134)
RN
and
(0 (wn, an, by) + wy) T — (0 (wy,a,b) + wy) T
> (0 (Wn, an, by) — 0 (wn,a,b))™, (5.135)
and

@ (wy, an, by) + wn)+ — (0 (wy,a,b)+ wn)+
< (0 (wn, an, by) — 0 (wy, a, b))+ (5.136)

Inserting (5.135) and (5.136) into (5.134), we get

AM—a ~
0< N 16 (W, @, bn) — 6 (wy, a, b))%, + &, (5.137)

as g, — 0. Since a > A;, we derive
16 (Wn, an, by) — 0 (wp, a,b)|l,, = 0. (5.138)
The prediction (5.133) is confirmed accordingly. Therefore, (5.132) yields
M (an, by) = F1y (wy,a,b) — e, > M (a,b) — ¢, (5.139)
as & — 0. The assertion is concluded by the combination of (5.131) and (5.139).
(2)b>a=Ax.

A similar discussion gets (5.124) and (5.131). Based on the definition, for &, > 0, &, — 0,
w, € My, |wyll,, =1, s.t.

M (an, bp) + €4 = F1y (Wp, an, by), (5.140)
and then
lim M; (a,,b,) > lim (Fy (wy,a,, by) —¢&,). (5.141)
n——+o0o n—+00

Notice that
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lim (Fy; (wy, ay, by) — &)
n——+00

> lim (1 (0 (wy, A1, b) + wy, an, by) — €4)

n——+00

Z hm Fll (wnv)\'lvb)

n——+00

+ lim [I(Q(Wn’)“lsb)+wnaanabn)_Fll(wn’)“lsb)]

n——+00

=_lim Fy (wp, A1, b) = M; (A, b) . (5.142)

n——+00

Combining (5.131), (5.141) and (5.142), we obtain

M (A, b) = 111}3 M (an, by) = _1im _M; (an, by) = My (01, b), (5.143)
n——+0oo

n—-+00

alluding to M; (a,, by) — M; (A, b).

B)a=b=A,.

Observe that M; (a,, b,) < M; (A7, A;) shows (5.131). In virtue of the definition, for &, > 0,
ey — 0, 3w, € My, lwyll,, =1, (5.141) follows. As 6 (w,, A;, A;) =0, again by (5.131), (5.141)
and (5.142), we reach the conclusion as desired. The proof is complete. O

Lemma 5.25. Under the hypotheses of Lemma 5.16, if (a,b) € Dg,l and T (a,b) > X\, then
38> 0, Va* €[a —8,a+38], Ib* R, s.t., (a*,b*) € DY,. If (a,b) € DY, and a = A, < b, then
35 >0, Va* e [a,a 46|, b* e R, s.t., (a*,b*) € DR,[. If (a,b) € DR,[ and b =\ < a, then
35 > 0, Va* € [a -3, a], Ib* e R, s.t., (a*,b*) € Dg,l.

Proof. For the case I' (a, b) > A;, by Lemma 5.18, Vby € [A;, D), Vb; € (b, 51+1), (a,by) € DI,
(a,by) € D;,. Take ¢ > O sufficiently small, Vb, € [b —¢,b), Vby € (b,b+¢], (a,b1) € D;I,
(a,by) € Dy,. Using Lemma 5.24, 3§; > 0, Ya* € [a — 81,a + 81, (a*, b+ ¢) € D}, and also
35, > 0,Va* €la —63,a+ 8], (a*,b—¢) € D;(,I. Taking § =T (81, 62) concludes the proof. A
similar argument tackles with the case I' (a, b)) =X < A (a,b). O

Proof of Theorem 5.23. In view of Lemma 5.25, suppose that (a,,V; (a,)), (a,V; (a)) € DOM
and a, — a, we prove 7y (a,) — V; (a). Without loss of generality, assume (a, V; (a)) € D*.
Take two cases into account:

(1) {a,} is strictly increasing.

Using Lemma 5.21 we obtain that {v; (an)}j;’? is strictly decreasing and thus convergent.
Assume V; (a,) — b*. As v (a,) > 7 (a) for fixed n € N, we get

00 >V (an) > b* 2V (a) = hip1 = a > ay = M, (5.144)
alluding to (a, b*), (a,, b*) € D*. Hence, by Lemma 5.22,

0= M (an, Vi (an))

= inf Fi (w, ay, v (ay))
weM;,||wll,,=1
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= inf sup I (v +w, an, Vi (ay))
weM, [wln=1yep,

< inf sup 1 (v—i—w,an,b*)

~ weMy.|lwl,,=1 yep,

= M (ay. b*). (5.145)

By Lemma 5.24, we obtain M; (a, b*) > 0 so b* =7V (a).

(2) {ay} is strictly decreasing.

Similarly, we yield that {v; (an)}jéxf is strictly increasing and thus convergent.
Assume Vj (a,) — by. Since V; (an) <V (a) for fixed n € N, we get

A <V (ap) < by <V (a), (5.146)
showing (a, bg), (a,,, b$) € D. Again by Lemma 5.22,

0= M (an, Vi (an))

F” (w7 al‘l5’]71 (al’l))

inf
weM;, |wll,,=1

= inf sup 1 (v+ w, an, Vi (an))
weM, [wln=1yep,

v

inf sup 1 (v—i—w,an,bg)

weM. wll,=1 yen,

=M, (a,,, b(’)") . (5.147)
Resorting to Lemma 5.24, M; (a, b;) <0 and then b =" (a), ending the proof. O
Next we turn our eyesight to analysis of the maximal curves.

Lemma 5.26. Under the hypothesis (Vo), if
(i) A(a,b) <0415
or
(ii) T (a, b) < A (a,b) =641 < o0,
then vy € Ni11, ||lvoll,, = 1, s.t.

Fay1(vo,a,b) =myy1(a,b). (5.148)

Proof. Set c =my1 (a, b). Notice that for fixed v € Nyy1, ||vl]l,, =1,

le-‘rl (Uvavb) S 1 (U,a,b)
< )"l—l—l =T (avb)

, (5.149)
2 (A1 +m)

SO we get ¢ < +00. -
On the other side, as A (a, b) <641, for Yw € M4,
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1 Aa,b
Fwtwabzg [P ver - 202 e,
RN
M —Aa,b
> 17(61) (5.150)
2(A +m)
and this shows ¢ > —o0.
In virtue of the definition, there exists a sequence {vk},i:‘l’ C N1, vk, =1, s.t.
For1 (v, a,b) — c. (5.151)
Due to dim N;41 < +00, assume vy — vo. Observe that for fixed w € My, Ve > 0,
lim Foyq (vg,a,b) < lim I (vg+w,a,b)=1((o+w,a,b), (5.152)
k——+00 k— 00

implying that ¢ < F»;41 (vo, a, b). The assertion follows. O

Lemma 5.27. Under the hypotheses of Lemma 5.26, if (a, b) € B,?l\ (M+15 Ai41), then (a,b) €
B* or (a, b) € B,.

Proof. For fixed (ap, bo) € Qj, |\ (B* U By), take account of the following cases:
(1) A < T (ag, bo) < A (ao, bo) < Aiy1.
(i) A(ao, bo) < Ajy1.
For fixed o € E (AM1+1), l@oll,, = 1, and Yw € M4,

1 1
1(¢0+w,ao,b0)=§/|V<P0|2+V(x)<ﬂ§+§/|Vw|2+V(X)w2
RN RN

a _ b 2
—§/I(¢o+w> \2—70/\<¢o+w)+|

RN RN
L[ Aao,bo)+m) 1~ )
> (1= 22202 T 410 — A (ao, bo)] -
_2< et tm >+2[ I+1 (ao, bo)] lwlly .
- Al+1 — A (ao, bo) (5.153)
2 (A1 +m)
and thus
Al+1 — A (ao, bo)
miz1 (@o, bo) = Fayy1 (0, ag, bo) > ——— =200 - ¢, (5.154)

2 (A41 +m)

(i) A (ao, bo) = Ai41.
Clearly, m;41 (ag, bp) = 0. If m;11 (ao, bo) =0, then for fixed g9 € E (Ai+1), looll,,, = 1, s.t.
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0> Fy41 (90, ao, bo) = I (o + T (90, ao, bo) , ao, bo)

1 1
=§f|wo|2+wx)|wo|2+5f|Vr(¢o,ao,bo>|2+V(x>|r(¢o,ao,bo)|2

RN RN

aop _2 bo 2
—7/|<<po+r(cpo,ao,bo>> | —7/|(¢o+r(¢o,ao,bo>)+| .
RN RN

We claim that
_12 412
ao | |(o+ 7 (90.a0.b0)"|"+bo [ |(wo+ T (90, a0,b0)"|
RN RN

<2 (ool + T (0o, a0, o)1)
Without loss of generality, assume by = Aj4+1 > agp. If (5.156) is violated, we get
| (@0 + T (90, a0. b))~ || ;- =0,

and then ¢o + 7 (9o, ag, bo) > 0 a.e. on RNV,
As (I;J (9o + 7 (90, ao, bo) , ag, bo) , G) =0 for Vi € My, we have

/ V1t (g0, ag, bo) Vi + V (x) T (o, ag, bo) W = Aj41 (T (@0, ao, bo) , W) 2 .
]RN

Take W = T (¢o, ao, bo), (5.158) yields

Or41 1T (90, a0, bo) 113

=< / IV (g0, a0, bo)|> + V (x) |z (g0, ao, bo)|*
RN

= hi11 17 (9o, a0, bo) 17 2

(5.155)

(5.156)

(5.157)

(5.158)

(5.159)

and this shows @g > 0 a.e. on RY. As go_Lyrq, it follows that ¢g = 0 a.e. on R", contradicting

ll¢oll,,, = 1. The claim is proved.
Combining (5.155) and (5.156), we derive a self-contradictory inequality

0= 1 (g0 + 7 (9o, ag, bo) , ag, bo)
AL+l

1
> f VT (g0, a0, bo) > + V () I7 (g0, a0, bo) > = == Iz (90, a0, bo) 7

RN

Ot — A
- I+1 [+1

> = I (g0, a0, bo)lI7 > 0,

also alluding to m;41 (ag, bo) > 0.

(5.160)
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(2) Ar41 <T (ao, bo) < A (ag, bo) <0141
If T (ag, bo) > Ai+1, for fixed v € Ni4q, |lv|,, =1,

1 —\2 2
I(v,ao,bo>=5/|Vv|2+V<x)v2—ao(v )" —bo(vF)
RN

T (ao. bo) — A1

<0, (5.161)
2(Ajy1 +m)

and thus m;41 (ag, bg) < 0. If T (ap, bg) = Ai+1, without loss of generality, assume 51+1 > by >
ao = Mi+1. Evidently, I (v, ag, bp) < 0 unless

ao [v™ |32+ bo v |32 = dasr 0112, (5.162)

so we are merely to deal with this case.
Observe that (5.162) = v <0 a.e. on RY. Hence, if I (v, ag, bg) = 0, we have

(Av,v) 2 = A1 vz, (5.163)

indicating that v is an eigenvector of A;;1, and consequently v_Ly; = v = 0, contradicting
[lvll,, = 1. Therefore, I (v, ag, byp) < 0, and by Lemma 5.26, we also derive m;41 (ao, bp) < O.
The proof is complete. O

Lemma 5.28. Under the hypotheses of Lemma 5.26, if (a, b) € FO, A <T(a,b) <Al(a,b) <
91+1 oriai<b<XMiyr<a= 91+1 < 00, then for Vb; € (—o0, b) Vb, € (b 91+1] (a b)) eF
(a, bz) € F,, . Inaddition, if (a,b) € F,
(a, b) € FJr

m ’

AM<a<Myr<b= 91+1 < 0y, thenfor‘v’b € (—o0,b),

m’

Aiming at Lemma 5.28, we prove the following lemma adapted to our needs:

I:emma 5.29. Under the hypotheses of Lemma 5.26, if (a, b) € F,?l, M<T(a,b)<A(a,b) <
0141 < 00, then (a,b) € Z (A).

Proof. We divide the proof into two cases:

(1) a < b. We deduce from Lemma 5.27 that for fixed (ag,bgy) € Rz\ (M1, Arg1), if
A (ag, bo) < Arg1, miyq (ag, bo) > 0, and if I (ag, bp) > Aj+1, mi4+1 (ag, bp) < 0. Therefore, it
follows that a < Aj41 < b.

Suppose by contradiction, (a, b) ¢ 3 (A), then there exists gy > O sufficiently small, (a*, b) ¢
T (A) for Va* € [a — €9, a + &9]. We claim that Va} € [a — g9, a), mi41 (af, b) > 0. Otherwise,
Jaj € la — &g, a), my4 (a’l“, b) =0. By Lemma 5.26, v € N4, |[v],, =1,

Fr41 (v,a,b) =myy1 (a,b) =0. (5.164)
We first show
I(v+7(v,af.b),af,b)>1(v+7(v.aj,b),a,b). (5.165)

By way of negation, we obtain v + 7 (v, a}, b) > 0.
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Notice that <Izi) (v + (v, ajy, b) ,aj, b) , ﬁ) =0 for Y € My4, i.e.,

/vf (v.af.b) VT + V (1) 7 (v.a}.b) i = bz (v.a%. b) . )

RN

yielding

st 7 (v.at. B) 2

< / |Vt (v, 4], b)]2 + V@)t (v, af, b)’2
RN
=b | (v.a},0) |75
Ifb =§1+1 < 0y, notice that
0=m1+1 (aik,b)
> Fyy1(v,af, b)
:1(v+t(v,aT,b),a,b)
> Fo41(v,a,Db)

=mj4+1 (a, b) = 0,
and we immediately derive a self-contradictory inequality
Ozl(v—i—t(v,a]k,b),a,h)

1 b
=3 f Vol 4V @0~ 3 ol <0,
RN

L2

(5.166)

(5.167)

(5.168)

(5.169)

alluding to (5.165). Clearly 7 (v, a%, b) = 0if b < §;11, (5.165) also follows from (5.171).
(5.165) indicates that m;4 | (ai“, b) > 0, violating the hypothesis ;1 (ai‘, b) = 0. The claim

is thus proved.

Along the same lines, ‘v’a’zk € (a,a+eol, m41 (a;, b) < 0. Hence, an argument resembling

Theorem 1.1(iv) and (v) of [32], gives rise to
Cayy (I(a;f,by 0) =0,G4 (1(a;,b)s 0) =844, G-
However, by Proposition 9.4,

Cu (1az.0:0) = C (I 9.0).

contradicting (5.170). The assertion follows.
2)b<a.

(5.170)

(5.171)
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Employing Lemma 5.27 gets b < A;41 < a. Suppose to the contrary that (a, b) ¢ £ (A). Then
there exists & > 0 suitably small, (a, b*) ¢ X (A) for Vb* € [b — ¢, b + ¢]. A standard argument
concludes the proof. O

Proof of Lemma 5.28. Obviously, for Vb6 < b, my4| (a. E) > myy (a, b). By way of negation,
3b € (—00,b), mi1 (a,b) =0. Using Lemma 5.26, Jv € Ni41, ||[vll,, = 1, s.t.

Fr41 (v,a,b) =myy41 (a,b) =0. (5.172)
We claim
I(v—i—t(v,a,g),a,g) >I(v+r(v,a,5),a,b). (5.173)

Argue by contradiction. If A (a, b) < g‘1+ 1, a standard argument shows v < 0 and t (v, a, Z;) =
7 (v, a, b) =0, and then by Lemma 5.4 and Lemma 5.29, we infer that a is an eigenvalue of A and
so (5.173) follows immediately as a ¢ ogis (A). If a € ogis (A), it follows that v is an eigenvector
of a and accordingly the combination of vl and v < 0 determines v = 0, conflicting with
lvll,, = 1. In like manner, we get (a, b2) € F,; for Vb € (b, G4+1]-

Quite similarly, we can treat the case I (a, b) < Aj+1 < A (a,b) = §I+ 1 < 09, ending the proof
of Lemma 5.28. O

Denote
Fr={@b eR: —o0<a i =b<fnl;

F*={(a,b)eR2:—oo<b5,\,+l5a59~,+1}.

Lemma 5.30. Under the hypotheses of Lemma 5.26, if (ai,bi) € FO A < Ta, b)) <
A (a;, b)) < 91+1 or A < T (ai,b;) < My1 < A(aj, bi) <91+1 <og, i =1,2, and a1 < a,
then by > bj.

Proof. In terms of Lemma 5.27, if (a, b) # (Aj+1, Ai+1), thenmyyq (a,b) > 0as A; <T (a,b) <
A(a,b) < Aj41, and my41(a,b) <0 as Aj41 <T'(a,b) < A(a,b) < §1+1, so we are merely
to deal with two cases: {(ai, b1), (az,by)} C F* or {(a1,b1), (a2, b2)} C Fy. Suppose to the
contrary that b1 < by. Actually, the contradiction originates directly from the combination of
Lemma 5.26 and the proof of Lemma 5.29. O

Lemma 5.31. Under the hypothesis (Vo), if (a,b) € F, mi4 (a,b) <0, then there exists &9 > 0,
Vb e [b — €0, b), my41 (a b) < 0.

Proof. Otherwise, Elgk — b, b~k < b, s.t. my4q (a, Zk) > 0. Hence, for g > 0, ¢ — 0, Jv; €
Nit1, vell,, = 1, for fixed w € Mj4q,

1 (vk +w,a, gk) > o141 (Uk, a, Ek) >mi41 (a, bk) — &) > —&. (5.174)

Assume v — vg and let k — +o00,
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I(vo+w,a,b)>0 (5.175)
and then yields m;41 (a, b) > 0, violating the hypothesis m;4 (a,b) <0. O

Define
T (@) = inf{b :(a,b) € FOU F,;] .

Lemma 5.32. Under the hypotheses of Lemma 5.26, if (a,b) € F, Ay < T (a,b) < A(a,b) <
0141 0r k1 < T (a,b) < M1 < A(a,b) =011 < 00, then b= [l141 (a) <= (a,b) € FY.

Proof. “=" originates from the combination of Lemma 5.31 and Lemma 5.34 below while “«<”
is concluded by Lemma 5.28. O

Theorem 5.33. Under the hypotheses of Lemma 5.26, if §1+1 < 0y, then 41 (a) is continuous
on (A1, )LZH] as (a, iy (a)) € F* and also on [)Lprl, §[+1] as (a, 11 (a)) € Fy. In addition,
if@H = 0y, then [1j11 (a) is continuous on (A, A1+1] as (a, iiy1 (@) € (F*)° and also on
[A1+1,§1+1) as (a, 41 (a)) € (Fy)°, where (F*)° and (Fy)° denote the interior of F* and F
respectively.

Two lemmas below serve as indispensable supplementary means to verify Theorem 5.33.

Lemma 5.34. Under the hypotheses of Lemma 5.26, mi41 (a, b) is continuous on (a,b) € F if
91+1 < 09, and also on (a,b) € F° U {(91+1, 91+1)} lf91+1 = 0yp.

Proof. Without loss of generality, suppose that (a,, b,) € F, (ay, b,) — (a, b), a < b. Take two
cases into account: _
(1) a<b<6y10ra<b=01 <oy.
We claim that for fixed v € N4 1, ||v]l,, =1,
Farv1 (v, an, by) = Fay1 (v, a,b). (5.176)
Take ¢ > 0. As

Fyp1 (v, an,bp) < Foip1 (v,a—¢,a—¢e) <1 (v,a—e¢,a—¢)<+oo, (5.177)

an argument analogous to that of Lemma 5.1 derives the boundedness of ||t (v, a,, by)||,,. As-
sume that a renamed subsequence (a,, by,), s.t. T (v, a,, b,) = w* in Hn11, and thus

lim I(v+t(v,an,b,,),a,b)zl(v+w*,a,b). (5.178)

J— oo
Hence, for Yw € M),

I(v+1t(v,a,b),a,b)
§I(v+w*,a,b)
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< lim I(w+rt(v,ay,by),a,b)

J—>+oo

< lim I(w+7t,ay,by),a,b)

J—>+o0

< lim [I(w+7t,anby),a,b)—1wW+71(,au by),an, byl
j—>—+oo

+ lim I (v+t(v,au,by),an, by)
Jj—>4o00

< lim I(v+w,ay, by)
Jj—+oo

=I(wv+w,a,b), (5.179)

yielding w* = 7 (v, a, b), and accordingly we get (5.176). Therefore,

Lim mjyy (an, bp) > _lim  Foiq (v, an, by) = Foy1 (v,a,b), (5.180)
n—-+00 n—-+00
indicating that
lim myyy (an, by) = myy (a, b). (5.181)
n——+o00

The other side of the shield, for ¢, > 0, &, — 0, Jv,, € Ni+1, v, =1, s.t.

miy1(an, bp) < Foy1 (W, an, by) + &5 (5.182)
Assume v, — vg. For fixed w € M4,
lim Foi41 (Vn,an,by) < lim I (v, +w,an,by) =1 (vo+ w,a,b) (5.183)
n——+o0o n——+00
and consequently,
im Fo41 (v, an, by) < Foi41 (vo,a,b) <myy1(a,b). (5.184)
n—-+00

Combining (5.181), (5.182) and (5.184) we arrive at the conclusion.
2Ya=b=Yy <oy.
Thanks to m;41 (ay, by) > my41 (a, b), the assertion follows. 0O

Lemma 5.35. Under the hypotheses of Lemma 5.26, if (a, b) € F,(,)l, A <T(a,b) <Aa,b) <
6141, then 38; > 0,Va €[a — 81,a+ 811, Ib e R, s.t., (@, b) € Fo, and if (a,b) € F), A <a <
Mgl < b =011 < 00, then 38, > 0, Va € [a, a + 53], 3 eR, st, (E, 5) € FY, and if (a,b) €
F,(,)l, AM<b<Myii<a= 51“ <00, then 383 > 0, Va € [a — 83,a], I € R, s.t., (Zi, I;) € F,(,)l.

Proof. The conclusion is fully based on Lemma 5.28 and Lemma 5.34. O

Proof of Theorem 5.33. By Lemma 5.30, Lemma 5.32, Lemma 5.34 and Lemma 5.35, the
consequence follows directly from an argument resembling that of Theorem 5.23. O
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6. Critical groups of J at infinity and zero

In this section we present the computation of critical groups of J at zero and infinity, which
are exploited as tools to deal with the problems on the existence of nontrivial solutions of (1.1).

6.1. Computation of Cy (J, 00)

Let E be a Hilbert space and ® : E — R be of class C'. Recall the concept of critical groups
of @ at infinity introduced by [2]:

Definition 6.1. Suppose ® (K ¢) is strictly bounded from below by ¢ € R and that ® satisfies the
(PS) condition. Then C, (®, 00) = H,, (E, °), ¢ > 0, is the g-th critical group of & at infinity.

It is independent of the choice of ¢ with (PS) condition.

Define

Iy =1, (u,a,b):%/(|Vu|2+V(x)u2>dx —%/(u—)2

RN RN

—g[(u+)2—t/G(x,u),

RN RN
tel0,1], G (x,u) = f(;’ g (x, s)ds, and consider the following equation:

—Au+V(x)u:au_+bu++tg(x,u), xeRY,
u(x)—0, as |x| — +oo.

6.1)
Our main result concerning the computation of critical groups at infinity reads:
Theorem 6.2. Suppose (f1) and (a, b) ¢ X (A), then
Cy(J,00)=Cy(J1,00)=Cy (1,0),Vt €[0,1]. (6.2)
To complete the proof of Theorem 6.2, we present some lemmas adapted to our needs.

Lemma 6.3. Under the hypotheses of Theorem 6.2, there exists M > 0, s.t.

sup sup |lull,, <M. (6.3)
tel0,1]ueky,

Proof. The conclusion follows directly from an argument analogous to that of Theorem 3.4.

Lemma 6.4. Under the hypotheses of Lemma 6.3,

/
o

0, (6.4)
t€[0,11, ue H), (RN\B,, 0,M)  llull,,
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where

J,’(u):u—A;ll[(a—l—m)u_+(b+m)u++tg(x,u)],

By, (u, M) = {weH,,L Nw — ull,, <M}.
Proof. By way of negation, there exist # € [0, 1], uy € H,il (RN) \B, (0, M), s.t.

195 @0,

— 0,k — 400 (6.5)
gl

Repeating an argument analogous to Step two of the proof of Theorem 3.4, it follows that
{ur}{25 is bounded in H,), (R") and ||J/ (uz) Hm — 0. Assume f; — fo, ux — ug in H,, (RV),
we get

/ VuoVe +V (x) upp

RN
= / (aua +bu8r)<p+to/g(x,uo)g0,V¢€C8° (]RN). (6.6)
RN RN

Due to the density of C3° (R") in H! (RV), we yield

/ VuogVe +V (x)upp

RN
:/(aua +bu(')")<p+to/g(x,uo)<p,V<peHl(RN), (6.7)
RV RN

and this shows that uq is a weak solution of (6.1) for r = 1y, i.e.,
Iy (o) =ug — Ay [@+myug + b +m)yud +t0g (x,u)] =0. (6.8)
Notice that
Jy (up) = ug — Al [(a+m)u; + b +m)u + kg (x,ur)] =0, (6.9)

fully imitating the trick employed by the proof of Theorem 3.4, we get ux — ug in H), (RV), so
uy e K Jio \ By, (0, M), which contradicts (6.3). The proof is complete. O

Lemma 6.5. Under the hypothesis ( f1), 3C <0, Vt € [0, 1], for u € Hnl1 (RN), if Jr(w) < C,
then ||u|l,, = M.
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Proof. Suppose the contrary. Take Cy — —o0 as k — +00,
Jy (ui) < Cr, lugll,, < M. We just treat the case A (a,b) + B >

then 3, € [0,1] and uy € E,
1. Observe that

1 Aa,b)+B+m
T (uk)z—llukllfn——/ui
2 2
RN
1 Aa,b)+B+m
> = lugll, — ————— luxll?,
2 2(uy +m)
Aa,b)+ B — )
=— llullz,
2(p1 +m)
A -
N CIL) b ¥l W V2 T (6.10)
2(uy +m)

and this contradicts J;, (ux) — —oo. The proof is complete. O

C Aa,b)+p— J! .
Lemma 6,11 <~ 2425007 o 3 o) 2

lueH):J (u) < C}, Ve 0, 1].

m

Proof. Notice that

0 Jy (w):—/G(x,w),

RN
we write Fi (w) = 8,J; (w), Fa(w) = !IJJ’t;(LU))HZ' As C < —
t (W),
llull,, > M, by (6.4) we have
sl
ref0.1], wes&  wlhn
Therefore, there exist R > 0, s.t.
J (w
inf ” I( )”m > ﬁ,
tel0.1], weBn @B Wiy 2

and ||w|l,, > % for Vw € By, (u, R). This yields

M$é

inf |7 (w) ||m > —.

t€[0,1], we By, (u,R) 4

local Lipschitz for Vu € J,E =

A@b) B pp2

2artm indicates that

6.11)

(6.12)

(6.13)

Take wy, wy € By, (u, R). Estimating crudely shows that for Vo € H,} (RV), [l¢l,, =1,
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/V(wl —w2) @
RN
<WVillee - ll@llp2g - lwr —wall 29 + [ Vallzeo - l@ll g2 - lwr — wall 2

< Cillwi — wally,

if p> 2% >2,and

/V(X)(wl —w) e

RN
<UVillgz - ll@llipa - llwr —wallps + 1 Vallpeo - ll@ll g2 - lwi — wall 2
< Ca llwi — wall,y

Hp:Zmng&%+é=L
Thereby,

/ V (x) (w1 —w2) @] < C llwg — wall,, »
RN

EE ==1\(E?1,EE).
And also observe that for Yo € H,}1 (RN), lell,, =1,

+ + + +
[ wt = wb)o| < i = wil,2 - tol
Q
_ 1
2
— + _ . +)2 + _ +)2
= (wl w2)+ (w2 wl) el
_wfzwz wi>wf
_ 1
2
2 2
< / (w1 — w2)? + / (w1 — w2 | gl
_wfrzwz+ wy >wf

=2lwi — w2y, -

Proceeding along the same lines, we have

/(wf—wz‘)w = /[(—w2)+—(—w1)+]<ﬂ < 2wy~ wall,, -

Q Q

7063

(6.14)

(6.15)

(6.16)

6.17)

(6.18)
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Therefore,
17/ wy) = I/ w2 |, < (14 C3+2a+m|+2[b+m|+28) [wy — wall, -

Consequently,

1F2 (w1) — F2 (w2) I,

- |9/ o)y, - |97 i) = @),
[ oy, - 9 ],

[/ D), + 17 w2,

RACUDI R FACEI

2 1
- + g —J
<HJ{(W1)|I,2,, ||J/(w1)||m.||J;(w2)||m> |7/ (wi) = ] (w)],

S PACHENATI] N

48

< RYEe | 7] i) = I} (wo) |, < Callwy — wall, .

|G (x,w1) = G (x, w2)| = |g (x, w2 + 6 (w1 —w2))| - [wy — wo|

<Blwy+6 (wi —wy)| - |lwy — w2,

0<6 <1, we get

|Fy (1) — Fy (w2)] < ﬁ/ w2 46 (w1 — w2)| - [wi — wa
RN
<28 wll, - w1 — wally + 28 wy — w2

<2BGBR+ lully) - llwr — wall, .
Hence,
| F1 (w1) F2 (w1) — F1 (w2) F2 (w2)

= 1(F1 (wi) = Fir (w2)) F2 (W), + [(F2 (w1) — F2 (w2)) Fi (w2) |,

=|F1 (wy) — F1y (w2)| - 1F2 (wo)lly, + 1F1 (w2)] - | F2 (wy) — F2 (w2)ll,y,
8 ~
< [mﬁ GBR+ lully,) +2C4B BR + ||u||m)2i| Nlwy — w2l

< Cslwy — wall,

and we arrive at the desired conclusion. O

(6.19)

(6.20)

6.21)

(6.22)

(6.23)
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Proof of Theorem 6.2. Consider the following equation on H! (RN ),

J/ (o (t,u))

ia (l" [,{) = —3,.]; (U (t7 M)) —2
[ @l

o ,00,u)=u,te[0,1] (6.24)

(see [9]). Letu € I€ = {u € H) (RN): I (u) < C}, C « — 2@ tb—m 32

2(puy1+m)
Since 9; J; (w) ﬁ is local Lipschitz for Yu € JZC, Vt € [0, 1], there is a tg > O such that
W), -
the solution of (6.24) exists for any initial value u € 1€ and 1 € [0, 19].
Observe that
d , d
we have
Ji (o (t,u)) < C if and only if I (u) < C. (6.26)

In view of the fact

|0 J; ()| = /G(x,u) <28 |ul;,, (6.27)
RN

consequently, by (6.11)

J/ (o (t,u))

28llo (t,w)l2, 28
A -

— llo @ w)ly - (6.28)

8 J; (o (¢, = -
i Jr (0 (t,u)) . |77 (@ @.un],, 8

Notice that (6.24) derives

t
o (t,u) —u=— / 0,y (0 (5. u)) —2 7 ) (6.29)
, |Ji @ s ),
Taking ¢ = % yields
(o @ u), @)y =llo@u)ly. (6.30)

By Fubini theorem and (6.28) we obtain
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t
|05 Js (o (s, u))]

lo (Wl < lully, + >
ol LACKENT]

S FACKES u))||mds

t
28
= llulln + =5 [ llo(s. )l ds (6.31)
0
and by Gronwall inequality
%,
o (& )l < llually, - €77 (6.32)

Repeat above procedure we deduce that (6.32) follows for V¢ € [0, 1].
Now we define a map:

S:u—>o,u),

which is a homeomorphism between the level sets of / € and JC. Thereby,

H, (J5> =5 (15) (6.33)
and the proof is complete. O
6.2. Computation of C« (J,0)

Also set f (x,s) =aos™ +bosT + g (x,5), g(x,5) =g (x,s) —(ap—a)s™ — (bp—Db)s™,

g (x,0) =0 and assume lim @ =0, lim M = 0, uniformly with respect to x € RV, To
s—0 §—>o00 °

show our consequence in this subsection, we need the following stronger hypotheses:
(f2) n}g)}] A(as, br) < H}SU}] (A(ar, b)) +1B) <o00,a: = (1 —t)ap+ta,by = (1 —1t)bo+1b.
t€l0, 1€[0,

Define

~ 1
7 (u):E/ (1l + Vv () u?) dx —%0 ()’
RN RN
bO +\2 ~
-5 (u ) —t | G(x,u),
RN RN

tel0,1], G (x,u)= fou g (x, s)ds, and consider the following equation:

{ Au+V xX)u=aou~ +bout +1g (x,u), x €RY, (6.34)

u(x)—0, as |x| — +oo.

Our main result concerning computation of critical groups of J at zero reads:
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Lemma 6.7. Let V be a real K-R potential and suppose ( f1), (ag, by) ¢ X (A), A (ag, bog) < oy,
then 0 is an isolated critical point of J. In addition,

C,(J,00=Cy (Z,o);cq (1,0),vt€[0,1]. (6.35)
Remark 6.8. Note that the combination of (f1) and A (ao, bg) < ¢ alludes to (f2).
Proof of Lemma 6.7. To show the first half of the proof, we verify that 3r > 0, Vr € [0, 1],
K7 N By (0,r)={0}, (6.36)

where K :={u e H) (RN): T () = 0}. Suppose by contradiction, 3r, > 0, r, — 0, 3t €
[0, 1], Fu, € KJNr N By, (0, r,) \ {0}, and thus |ju,||,, — 0. Set &, = ﬁ Hence,

g(xa ”n)

(172

/ Vi,V + V () g — aoil; ¢ — boil ¢ — ty 0=0,YpeH) (]RN) . (6.37)

RN

Set ||y ||, = pn, and take 8, > 0, 8, — 0, s.t. g_;l — 0. Now we claim that Vg € H,), (RV),

o e B gl

n—+00 ll2tn 1l m

0. (6.38)

Indeed, observe that @ —ap as s — 0~ and @ — by as s — 01, then for Ve > 0,
A§>0,VseR, 0 < [s] < S,

max |8 & (6.39)
xeRVN s 4ol
Clearly, AN; € N, Vi > Ny, §, < S. Therefore,
jiun|§5n |§(xvun)(p|
(172
< Nl - el
4lel, "
< 2l == (6.40)
=< 2@l = 5- .
4ol "2

On the other side, notice that g (x,s) = g (x,s) — (ap —a)s~ — (bg — b)sT, so there is a
C>0,forVx e RN Vs eR, |3 (x,s)| <Cls|.

If N =3, picking 7 € 2,2 = g5 <P <2 5+ 7

2<(1+a)ﬁ<2*.Asg—Z—>O,EIN26N,Vn2N2,

= 1. Choosing o € (% ﬁ) =
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f|un|>3n g (x, un) @l
et ll

1
< Cflun|>5n |I/[n| - |(p|

- 5% ”Mn”m

~ L ~
< C Syl 7) - (fg o)

B 85 Nuanllm

S

o
~ [ Pn &
=C\35 ) > 6.41
= <5n> ||€0||m<2 (6.41)
Take N = A (N1, N2), we have
(7P
< /illrllfsrz |§(x’un)(p| ‘A“n|>8n |§()C, ”n)(p|
B (78] |72 .
<s+2 (6.42)
crfog .

-2 2

and the claim is thus proved.
Assume %, — ug in Hnll (RN ) A standard argument shows that u( is a weak solution of the
following homogeneous problem:

{ Au+V (x)u=apu~ +bout, x eRY, (6.43)

u(x)—0, as |x| — +oo.

Thanks to (ag, bg) ¢ X, we get ug = 0. Observe that A (ap, byg) < op alludes to (f2). Set

do = Hfg)i] (A (at, by) +tB). There is no harm supposing do > 1 = info (A), s.t., ogis (A) N
tell,

(1. dol = {hidi_ys b = i =info (A) <ha <. <.
It deduces from (6.37) that

/ VTP 4V () 70 < (A (a1 by,) + 10B) 1122
RN
<dollin]75 . (6.44)

ie.,

2 2
/|VPN,ZZ,,|2+V(x) (PN,ﬁn)2+f(VPN]J,, FV () (PN]Jn)

RN RN

2
, (6.45)

<do| P} + o | Py ]

yielding
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ad el O I, (6.46)

HPNLun 2 - 91

Asu, =~ 0in H,}l (RN), we infer from (6.46) that
i, — 0in L? (RN ) , (6.47)
and hence by (6.44),
1 < (do+m) [inll3, — 0. (6.48)

A contradiction! Thus we get (6.36). In view of the hypotheses, JN, satisfies the (PS) condition
for Vt € [0, 1]. Making use of Proposition 9.4, we arrive the conclusion. O

7. Four solutions theorem and some preliminaries on Morse theory

In this and next section we always assume that V (x) is a real K-R potential and also make
the following hypotheses:
(V3) VeCVN=22(RN)if N>3and Ve C! (RY)if N=1,2,0<a < 1;
(Va) M = p1 =info (A) < hp < -+ < A < 00, 0dis (A) N [11,00) = {Ai}_ s
(f3) Let f(x,s) =ags™ +bosT +3(x,5), lir(r)l @ =ap, lim f(x ) = by, uniformly on
S—U_

s—04
x € RV, and g(x,s) € CN72 (RY x R,R) if N >3, and g (x,s) € C' (RY xR, R) if N =
1,2;
(fa) M <T(a,b) < A(a,b) < Orp1 =T (jagy, 111, 00), [ > k > 3;
(fs) A(ao, bo) < A1;
(f6) fi(x,s) > @ > —m, Vs #0, a.e. on x € RV, where m is given by Section 3.
Rewrite J by

1 m
um=5wﬁ—§ww;—/Famy
RN

Let Ay =—-A+V +m,if m+ A1 >0, then A,, is a positive definite self-adjoint operator
with D (A,,) = H? (RN ) According to the spectral resolution of self-adjoint operator we have

+00
Ap = / AE;. (7.1)

0

Lemma 7.1. Suppose .1 = info (A) < og. Under the hypothesis (V2), if u € H,}l, lull;2 =1,
then

D) (u,v)y, ={((m+r)u,v)2 iff (u,u),, =m+ xrq, forVov € H,,li;

(2) The dimension of solution space E1| of the following linear equation

(, V) = ((m+ 1) u,v)2,Yve HL, (7.2)
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is 1, and so we can choose r1 > 0, the corresponding eigenvector of 11, such that E1 = N1 =

span {1 }.

Proof. As Hnll = H', decompose H,}l = N; @ M;. We just deal here with the “if” part since the
“only if” part is trivial. Setu =v 4w, |[ull;2 =1, v € N;, w € M;. We claim that u € N;. In fact,
if w# 0, then (A, v, w);2 = 0. Therefore, by using Lemma 2.11, we have

A +m= (A, V)2 +(w, w), +2(A,v, w);2
> (A +m) [vl7, + (o0 +m) [[wll7, > A1 +m. (1.3)

A paradox! A similar way shows u € Ny if v € N1, w € Mj. The claim (1) is thus proved and
(2) follows directly from Theorem XIII1.48 of [33], ending the proof. O

It is clearly apparent that J ¢ C> (H,,l1, R) as f (x,s) has jumping nonlinearity at 0, so we
need some preliminaries on Morse theory for this kind of functional.

In order to use Morse theory for jumping nonlinear problems, we present the following split-
ting theorem and shifting theorem and they were essentially given in [20] and [21].

Let X and Y be Banach spaces and U be a subset of X. Recall that F': U — Y is said to be a
strictly Fréchet differentiable at xo € U if there exists A € L (X, Y) such that

i IF(x2) = F(x) =A@ —x)ll
im =

X1, X2—>X0 llx2 — x1]|

0. (7.4)

Compared to a splitting theorem yielded by [21], the following statement shows a little varia-
tion version but the proof is almost the same.

Proposition 7.2. (Splitting theorem) Let E be a Hilbert space, J € C' (E,R) and uq € E be an
isolated critical point of J. Assume

(i) VJ : E — E is Lipschitz continuous, and V J (u) is strictly Fréchet differentiable at uy,
and A = J" (uo) is a Fredholm operator with index 0;

(i) With N = ker A and N-LE being the orthogonal complement of N in E, for Yv € N,
there exists a dense subset D, of N“E such that hwy + (1 — M) wy € D, for a.e. A € [0, 1], if
wy, wy € Dy. J" (ug + v + w) exists for V(v,w) € Yy, and J” (ug+-+-): Yy — L(E,E) is
continuous, where Yy = {(v,w):v € N, w € D,}. Then there exist a ball B (ug,d) in E cen-
tered at ug and with radius § > 0, a ug-preserving local homeomorphism h from B (ug, §) to
h (B (uo, 8)) C E and a Lipschitz continuous map g : B (ug, 8) NN — N E such that

1~
J(h(u))=§< w, w)+J (o +v+g (v), (7.5)

u—u0=v+w,v€N,weNlE.
Proposition 7.3. (Shifting theorem) Under the hypotheses of Proposition 7.2, if there is an or-

thogonal decomposition N*E = W, @D Wa, such that j =dim W < 400 and
(@) P2J (o + v+ wy + ) : Wo — Wy is pe-monotone for all (v, w;) € N Py Wi,
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@) —P1J (wo +v+ -+ wp) : Wi — Wy is u-monotone for all (v, ws) € N @y Wa, where
é g denotes decomposition into direct sum in E, and P; : E — W; is the projection onto W;,
l zl)le’nzéte .7(1)) =J (ug+ v+ g )), then

Cy (J,up) = Cyj (J,0). (7.6)
Lemma 7.4. Under the hypotheses (f1), (f3), then VJ (u) : Hnl1 — Hn]1 is Lipschitz continuous.
Proof. We just need to verify that

AV (f e u):HY - H! (7.7)

is Lipschitz continuous, i.e., there exists [ > 0, s.t.

|45 ¢ o = £ )| <t = wall Va2 € Hyy (7.8)

(f1) indicates that 3C > 0,

|f (x,51) — f(x,8)] <Cls; —s2],V¥s1,50 e R, x e RV, (7.9)
Therefore,
f|f<x,u1>—f(x,uz>|2sc2f|u1 — ). (7.10)
RN RN

Notice that A,, : L> - L?isa self-adjoint operator with D (A,,) = H? (RN), then T (A;;) =
fjoooo T (L) dEj, is also a self-adjoint operator, where 7: R! — R! is any bounded Borel measur-
able function. Especially, A;,! : L — L? is self-adjoint.

In view of the definition, for Yu € L2, A,,'u € H? as info (A,,) > 0. Hence,

2
=<A;11u,A;11u>

m

-1
HAm u

m

1 2 1 2
=/‘VA,; u‘ +(V+m)(A,; u)

RN
_ -1 -1
_/AmAm u-A,u
RN
_ (41
_<Am u,u>L2. (7.11)
Set g = m + L. Observe that for VA € o (A,,), ao§A<+oo:>0<%§alo.Setu=%,

then o (A,,') C [O, a—lo] Due to the fact A;,'u = [*%° ud E,u, we have
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+00
<A,;1u,u>L2=/ud<EMu,u>L2
—00

1
«Q
=/;Ld(EMu,u)L2
0
1 2
< — llully,- (7.12)
o
(7.11) along with (7.12) yields
1
|45 <oq? lul. (7.13)
m

(7.13) implies that A,;l L% HJL is a bounded linear operator. The combination of (7.10)
and (7.13) derives

|45 ¢ o = £ )|
_1
<oy ?|If G up) = f (,u2)l g2
_1
< Cay ? luy —uzll 2 < Cag 't lluy — w2y - (7.14)
The proof is complete. 0O
Define
DO(RN) = {u ecV (RN) u )|+ Vu (x)|#£0,u(x) - 0as |x| - —|—oo};
D (RN) = {u echN (RN) :mes{xeRN;u(x)=0} =0];
D(]RN) = {u eH,il (RN) :mes{x GRN;u(x)=O} =0}.
Lemma 7.5. Suppose (V3), (Va), (f1), (f3) hold, then
(1) for any solution ug of (1.1), ug € D (RN);
(2) VJ (i) is strictly Fréchet differentiable in H), for Vil € D (RN ) and J" (i) is a bounded
operator from H) into H);
(3) J” (uo) is a Fredholm operator with index zero.
Proof. Replace
—Aug+V (x)ug= f (x,up), (7.15)

with
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—Aug+ V (x)ug =0, (7.16)

where
7o) — V(x), x €RN up(x) =0, 717
)= V (x) — L0 - x e RN, g (x) #0. 717

~ N
As V (x) € L2 (RY), by the unique continuation property of solutions of Schrodinger equa-
tion (see [15], [17], [18], [30]), we get ug € D (RV).
Let 1% (u) =u*, u € H), for any 7 € D (R"), define

u(x), xeRY @),

0, xeRE@URY @), (7.18)

AZu(x) = {
where
Rf(ﬁ): [xeRN:iT(x)>O};
RN (i) = [xeRN:ii(x) <0};
RY (@) = {x RN :ﬁ(x)zo}.
It is easy to check that Agi e L(H), L7(RN)), Vg € (1,2%), where L (X,Y) denotes the space
of all bounded linear operators from Banach space X into Banach space Y.

First, we show that (Ii)/ :D (RN) — L (Hn11, L1 (RN)), Vq € (1,2%), and the Fréchet deriva-
tive (Ii)/ (@) = A%. For u € H), denoting

E(u,i) = (Rf (@ +u)n RY (ﬁ)) U (Rf @ +u)N RY (ﬁ)) . (7.19)
If mes (E (u, %)) < +00, then

| @ +uwy* —a* — Azu,,

1

q

= / |+ u|?

E(u,u)
1
q
< |ua]?
E (u,u)
1_1
< (mes(E (u,u)))? = |lullz2x <Clull,, - (7.20)

It suffices to verify that
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mes (E (u, u)) — 0 as |ul,, = O. (7.21)

As a matter of fact, notice that
. N ~ 1
Iim mesixeR" :0<u(x)<—}; =0, (7.22)
n—-400 n

hence, Ve > 0,IN €N, Vn > N,

(7.23)

N ™

- 1
mes{xeRN:O<u(x)§—}<
n

For fixed ng e N, ng > N,

1
mes <RN @+u)n Rf (ﬁ— —))
no

- i

N =~ N[~ 1
RN @itw)nRY (u—%)

< n%* / |u|2*

N 7 N(~__1
RZ (u+u)NRY (u7%>

<cnd ul?, (7.24)

L
3

indicating that 3§ = (%) 2 ngl > 0, if |jul,, <4, then

~ ~ 1
mes (Rf (u—i—u)ﬂRi’ (u — —)) <
ng

Consequently, combining (7.23) and (7.25),

(7.25)

N ™

mes (Ry @+u)NRY (ﬁ))
< mes (Ry U +u) ﬂRf <ﬁ— i))
no
+mes<R§(a‘+um{xeRN:0<ﬁ(x)5i}>
ng

<z+-=e (7.26)

N ™

Proceeding along the same lines, we have
mes (Rf @ +u) N RY (’LZ)) S 0as [ul, — 0. (7.27)

Therefore, (7.21) is valid and (IF)’ (@) = A% for & € D (RV).
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Forﬁ,ﬁ—l—ueD(RN),

” A:Et+u - Aﬁi “L(LZ*,LZ)

= sup ” (Aﬁi-‘ru - A%:) v ”L2

Ivllp=1
1
2
= sup / Els
olze=t { Lo
< (mesE (u, )% , (7.28)

yielding AZ € L (H,}, L?). The combination of (7.20) and (7.21) obtains
J' (@) =id — A, (aA7 +bAZ + g} (x, i) +m). (7.29)

This together with (7.13) and aA; + bAY + g/ (x, %) +m € L (H), L?) shows that J” (if) :
H} — HJ is a bounded operator. That’s the precise statement (2).

Observe that (f1) + (f3) = 00 > A(a,b) + B > f] (x,s) for Vs € R\ {0}, a.e. on x € RY,
Using (Va), (f1), (f3), it follows that if ug is a solution of (1.1), for Vv € H?,

(A +V = £l u) v, v) 2 > (A +V =A@, b)— pv,v)2,  (7.30)
then by Proposition 2.7
inf oegs (Am J" (uO)) > infoess (Ag) =00 — A (a,b) — B, (7.31)

dropping hints that oess (A J” (o)) C [00 — A (a,b) — B, +00) and thus m (ug) + N (ug) <
400, where Ag = —A+V — A (a,b) — B, m (up) denotes Morse index of J at ug and N (ug) =
dimker J” (ug). Since J” (ug) is self-adjoint, it concludes claim (3) and the lemma is proved. O

In what follows, we set E = H,L. Now we present a crucial consequence stated as follows:
Lemma 7.6. Let ug be a solution of (1.1), A= J" (ug), N =ker A, E = N @y NLE. Under the
hypotheses of Lemma 7.5, then

(1) For any v € N, there exists a dense subset D, of N-LE such that 2w+ (1 =X wo € Dy
fora.e. ) €[0,1], if wi, wy € Dy,

(2) J" (uo + v + w) exists forany v € N and w € D,;

B3)J" (ug+v+w): Yy — L(E, E) is continuous, Yy ={(v,w):ve N, we D,}.

Proof. Define
W= [wecN(RN)mE:<w,v)m=o,VveN};

DU=[weW:mes{xeRN:uo(x)—i-v(x)—i-w(x):O}:O}.
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We claim that Aw; + (1 —A)w, € D, for ae. A € [0,1] if wy, wy € D,. Denote B =
{x eRN tug (x) #0, ug (x) + v (x) + ws (x) # O}. By (V3), (f3) and regularity of solutions for
Schrodinger equation (see [22]) we get ug € C N (B). As w; € D,, in view of the definition of B,

we have mes (RV\ B) = 0. Notice that ug (x) + v (x) + w; (x) € CV (B), by Sard theorem, for
ug(x)+vx)+wy(x)

uo ) o) twa(x) — M at some x € B, then

ae. ueRif

075(uo(x)+v(x)+w2(x)),V<uo(x)+v(x)+w1 (x))

ug (x) + v (x) + w2 (x)
=V (uo (x) +v(x) + w; (x))
ug (x) + v (x) + wy (x)
g () v () Fwa (x)
=VF (x), (7.32)

V (uo (x) +v (x) + w2 (x))

and this shows mes{x € B : F (x) =0} =0, where
F(x)=uo(x)+v(x)+w (x) = puuo(x)+vx)+ws(x)).
Let D, (B) ={we W :mes{x € B:ug(x)+v(x)+w(x)=0}=0}. Take u = A}»;l then
we get

Aup (x) +v(x) +wp (X)) + (1 —2) (uo (x) + v (x) + wa (x))
=ugx)+vx)+riw (x)+ 1 =21 wr(x), (7.33)

and Awj (x) + (1 — A) wy (x) € Dy (B). Since mes (RY\B) =0, claim (1) is verified. In view of
the definition of D,,, we arrive at conclusion (2) via Lemma 7.5.

For fixed vg € N, wy € Dy, due to the facts that E — L% and A,;l eL (Lz, E), by (7.28)
we get

- + +
”Aml (Au0+v+w - Au0+vo+w0) (7~34)

L(E,E)

as v — vy, w — wop, v € N, w € D,,. Consequently (7.34) derives assertion (3). The proof is
complete. O

Lemma 7.7. Suppose that uq is a solution of (1.1) and m (ug) = 0. Under the hypotheses of
Lemma 7.5, if A =1 is an eigenvalue of the following weighted eigenequation

{(—A+V+m)§0=)~(fs/(x’”0)+m)¢” x eRY, (7.35)

@ (x) =0, x| = +o0,

then 1 is the first eigenvalue of (7.35) and dim E (ug) = 1, where E1 (ug) is the eigenspace
corresponding to A = 1.

Proof. By Lemma 7.5 we have ug € D (RN), and combining this with (f1) and (f3), f; (x, uo) €
L>® (RN), indicating that V* is a K-R potential, V* (x) = V (x) — f/ (x,up). Based on the
hypothesis, it admits of no doubt that n = 0 is the first eigenvalue of the following linear problem
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_ * _ N
{( A+VHe=np, xeRV, (736)

¢ (x) =0, x| = 400,
and invoking Lemma 7.1 the assertion follows. 0O

Lemma 7.8. Suppose that ug is a mountain-pass type solution of (1.1). Under the hypotheses of
Lemma 7.5, then

Cy (J,u0) = 841G. (1.37)

Proof. By Lemma 7.4, Lemma 7.5 and Lemma 7.6, we get Proposition 7.3 and m (ug) < +00.
Set j = m (ug). Consequently,

Cy (J,u0) = Cyj (J,uo) . (7.38)

T ()= (o +v+g@).If j =1, Co (T, up) # 0, indicating that 0 is a local minimizer of J
and thus we yield (7.37) by (7.38). If j =0, as Cy (.7 uo) # 0, it deduces from Lemma 7.7 that
N (up) =1 and then O is a local maximizer of J. Again by (7.38) we also derive (7.37), ending
the proof. O

8. Proof of Theorem 1.1
8.1. A weak maximum principle for RN

We first recall some concepts and classical results. Consider the elliptic operator L of the
form

Lu=—D; (a"f () Dju+b' (x)u) +d () Diu+dx)u,al =all, (8.1)

and coefficients a”/, b', ¢!, d (i, j=1,---,N) are assumed to be measurable functions on
a domain @ C RN, If u is weakly differentiable, and a'/ Dju + b'u, ¢' Diu + du are locally
integrable, then, in a weak or generalized sense, u is said to satisfy Lu = 0 (> 0, < 0) respectively
in Q, i.e.,

o (u,v) = / [—D,- (aiiju + biu> v+ (ciD,-u —i—du) v] dx=0,(=0,<0) (8.2)
Q
for Vo € C} (), v >0 on Q (see [14]).
Proposition 8.1. (see [ /4]) Let u € W'2 (Q) satisfy Lu > 0 in Q. Then

infu> inf u=. (8.3)
xeQ x€dQ2

From Proposition 8.1 we derive the following fact:

Lemma 8.2. Let u € H! (RN) satisfy Lu > 0 in RN, Thenu >0 on RV,
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Proof. Suppose to contrary that Jxg € RY, u(x9) < 0. Set & = —u (xg). Pick R > 0, Q =
B (0, R), xg € Q2. By Proposition 8.1,

inf u~ < —a, (8.4)
xX€IQ2
which implies that for ¢ = %, Ix* €0,
o o

*) <« _ = ——, 8.5
u(x )_ o+ > ) (8.5)

Choose R, — 400, then Ix; € 982,
u(xr) < —%, (8.6)

Q, = B (0, R,,). However, this contradicts u (x}) — O sinceu € H' (RV). O

8.2. Hilbert—Riemann manifold N

Let
N={ueE\{0}:(J (u).u), =0}:
Si={wekE:|ul,=1};
-~ —~ —~ u
Sz{ueSl:uz—,ueN}.
llatll

Lemmil\ 8.3. Under the hypotheses (f3), (f5), (fo),
(1) S is an open set in S;;
(2) N is a Hilbert—Riemann manifold without boundary.

Proof. We first claim that for each 7 € S there exists a unique ¢ () > 0 such that r (W) € N,
and t () : S — N is a differentiable homeomorphism. Notice that for u € N, set u =tu, t > 0,
u € S1, then we have

_ 1 _
/|Vu|2+(v+m>u2=;/gm (x, 1) @, (8.7)

RN RN

gm (x,u) = f (x,u) + mu. By (fe), the right hand side of (8.7) is an increasing function of ¢.
Therefore there exists a unique ¢* > 0 such that r*u € N. Let & (t,u) = (.I "(tuw), ti[)m. We show
that A} (t,u) < 0 if h (¢, w) = 0. Clearly, & (t,%) = 0 if and only if (8.7) follows. Again by (fs)
we obtain that if ¢ solves (8.7) then

h;(t,ﬁ)=2z—/(ﬂ(x,zﬁ)m%rzmraz)—/f(x,tﬁ)ﬁ<o. (8.8)
RN

RN

This indicates that for each 77 € S,
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sup J(tu) =J (¢t (@)u) < +oo. (8.9)

tel0,4-00)

For Vi € S by (8.8) and IFT (implicit function theorem), there exist », r; > 0 and unique
t (@) eC! (B (710, 7) N S, B (to, r1)) such that @)% € N and h} (1 () ,w) < 0, where to =1t (uo)
B (t9,r1) = (to —r1, 1o +r1) Observe that t(')u is a diffeomorphism from B (up, r) N Sto

Ny, = {u =tMueN:uec B(uo,r)ﬂS} so S is an open set in S;. It is easy to see that
J(t (W) Uy) — +ooas, — U € BS, where S is a closure of S in S1. Since Sis a C! man-
ifold, N is also a C'! manifold. Combining A} (t (@) ,u) < 0 and IFT we know that 9N = &. As a
submanifold of E with its canonical metric, N inherits a Riemann structure and consequently N
is a H-R (Hilbert-Riemann) manifold. O

8.3. Brezis—Martin theorem and separability of +P NN with —P NN

Define +P ={u € E:u >0} and —P = {u € E : u <0}. The following local existence and
uniqueness result have a positive effect on proving the invariant property of £ P under the nega-
tive gradient flow of J (see [6], [8] and [28]).

Proposition 8.4. (Brezis—Martin) Let A be an open subset of a Banach space X, and let B C A
be closedin A. If V : A — X is a locally Lipschitz mapping, then forVu € B, Ir > 0 and n (t, u),

satisfying

n(tu)=V (@ w), Vrelo,r), 8.10)
n(0,u)=u€B, n(t,u) €B,
if and only if
%@)h—ld(uwﬁ(m,z}):o. (8.11)

Lemma 8.5. (Invariant property of =P ) Under the assumptions (f1), (f3), (fs), =P are invari-
ant sets under the negative gradient flow n (t,u) of J, i.e., n(t,u) € £P,YVu e £P, t > 0.

Proof. Let n (¢, u) be the negative gradient flow of J given by

{ DY — ] (5 (1,u)), 8.12)

n0,u)=u.

By (f1), (f3) and Lemma 7.4, the maximal interval of existence of 7 (7, u) is [0, +00). Take
A=E,B=+4+P,V =—-VJ,r =+400 in Proposition 8.4. We now show

limh~'d (u —hVJ @), +P)=0. (8.13)
N0

Notice that

inf |lu—hVJ @) —vl, <|@—-rvIw)~| . (8.14)
ve+P m
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invoking Lemma 8.2 and ( fg),
Ay'gm (x,u) > 0,Yu € +P, (8.15)
and hence
limh™'d w—hVJ@),+P
limh~d (W), +P)

< lim Hh*‘ U —hVJ (u))*ﬂm

N0
= ||1i [h—l — U+ A g (2, ]7 =0. 8.16
Jim u—u+A, gn(x,u) ; (8.16)
Proceeding along the same lines, we have
lim h='d (u —hVJ (u), —P)=0. (8.17)

AN

The assertion follows. O

Recall that if M is a H-R manifold in Hilbert space X and €2 (u, v) denotes the family of all
piecewise smooth curves connected u, v in M, then we define

b
dy (u,v)= inf /Hd(r)”dr, (8.18)

oeQ(u,v)
a

where o (a) =u, o (b) =v, Vo € Q (u, v).

Remark 8.6. Palais [31] (see also [8]) showed that d is a metric on M and the reduced topology
is equivalent to the topology on the manifold.

Theorem 8.7. (Separation theorem) Under the hypotheses ( f3)—(fs), there exists a 8o > 0 such
that if § € (0, 8p), then

@) (+P)’ NN) N ((—P)’ NN) = &;

(i) n (t,u) € (£P)®)° as u € (£P)°, Vt € (0, +00).
Proof. First it is easy to see that (+P NN) N (—P NN) = &. Otherwise, Ju € (+P NN) N
(=P NN), and this implies that # = 0, contradicting u € N. By way of negation, 35, — 0,

un €N, s.t.uy € (HP)* NN) N ((—P)’" NN).
Note that

wierfp lu—wl2=u|,. (8.19)

and

inf |u, —wl;2 <C inf |u, —wl,, <Céy, (8.20)
we+P we+P
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thereby,
- — 0in L? (RN) . (8.21)
An analogous argument yields
) — 0in L2 (RN) . (8.22)
This together with (8.21) shows
un = 0in L2 (RY) (8.23)
Notice that
litn 7, = / &m (X, ) tn < C1 Jlug | (8.24)
RN
Hence by (8.23),
lunlly — 0. (8.25)
We now claim that
inf flull, > 0. (8.26)

In view of the hypotheses (f3) and (f), for fixed p € (2,2%), 8 (x,5) =0 (|s|P~") as s — o0,
uniformly on x € R¥, and therefore for Ve > 0, 3C (¢) > 0, s.t.

g (x,8)| <els|+C(s) |s|p_1,V(x,s) eRN xR. (8.27)

Suppose to the contrary that Ju’ € N, ||u ||m — 0. Set u} =tyily, t, > 0,1, > 0, iy, = 1.
By (f5), we can pick ¢ > 0 small sufficiently such that A (ag, bp) + & < A1. Consequently,

1=/|Vﬁn|2+(v+m)ﬁ5

RN

~2 2 ~ -2 ~
< [ (wl@ P+ b0 F) + @ +m) [ @R+ e [ @
RN RN RN

< (ao,bo)+e+m)/ |ﬁn|2+r,f’*20(e)f @17
RN RN

- A (ag, bo) +&+m
AM+m

+1/72C () / [inl? (8.28)
]RN
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yielding a contradiction

_ A(ag,bp) +e+m
AM+m

1

<t!72C (e) f [i,|P = 0. (8.29)
RN
The claim is thus proved, conflicting with (8.25). That’s the precise statement (7).
(8.27) shows that 3p > 0, for fixed g € (2,2*), 3K > 0, s.t.
lgm (. )| < (a+m—p)|s] + K [s]97" ¥ (x,s) e RN xR, (8.30)

and using (fg) we get g, (x,5)s >0, Vs #0, a.e.on x € RV,
Notice that for any u € (+P)® and v = Anjlgm (x,u),

Jnf o —wl, - o],
< vl =0,

=/gm(x,u)v_§/gm (x,u")v™
RN RN
<Oatm—p) u o oo+ K Ju 5 o]

=(itm—p) inf lu—wlz- o]

+K wierifp lu — wllﬁl o7

AM+m—p . B
e b 7l
+R ot Ju—wli o],
MAm—p  ~ ] B
< (Mgt Rt w1, (831)

In virtue of (8.31), it follows that for § > 0 sufficiently small, 38 € (0, 1), s.t.

wielgrfp lv—wll,, <B- wieanP lu —wll,, <B4, (8.32)
ie.,
vC (+P)P c (+P)°) asue (+P)°. (8.33)
Similarly we have
vC (=P c ((—=P)°)° asue (—P). (8.34)

Hence, 3w, w, € +P,
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lu —wyll,, = inf |lu—wl, <34, (3.35)
we+P
lv—wyll,, = wieanP lv—wll, <4, (8.36)
therefore,
inf —hJ (u) —
it Ju—nJ" G —wl,,
= inf |[(1—hA)u+hv—wl,
ve+P
<A =n)llu—wylly+hlv—wyll, <4, (8.37)
yielding
inf |lu—hJ ) —wl|, =0. (8.38)
we(+P)°
Likewise, we have
inf |u—hJ (u)—w|, =0. (8.39)
we(—P)°

By Proposition 8.4 we consequently verified (i7). The proof of Theorem 8.7 is complete. O

Lemma 8.8. Under the assumptions (V2)—(Va), (f1), (f3)—(fe), if (a,b) ¢ X (A), then J has
at least two nontrivial critical points uy € +P NN, up € —P N N. Moreover, if Kj N (-l—P)‘S =
{0,u1}, Ky N (=P)® =1{0,us)}, then Cq (J,u;j) =841G, i = 1,2, where Cy (J, u;) denotes the
q-th critical group, with coefficient group G of J at u;.

Proof. For Vg € ((+P)%)° NN, define

o _[r@inec(on ((+P?)°). withh © =05 (1) =<7,
+.9.6 = where ¢ = ”((:%”, ¢ >t (¢) > 0 such that J (cg) <0,

and for Yo € ((—P)%)° NN, denote

L _|roinec ([0, 11, ((—P)5)°) ,with 7 (0) = 0, 2 (1) = ¢,
—e0 where ¢ = ”%”, ¢ >t (¢) > 0 such that J (cg) < 0.

By (f5), 0 is a local minimizer of J and there exist p, r > 0 such that

inf J > p. 8.40
MESIII?I(OJ) w=zp ( )

In view of Theorem 8.7, a standard argument shows that

Cios= inf sup J@u)> (8.41)
¢ h(t)€F+,¢,auehl()t) ( ) P
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is a critical value of J and the corresponding critical point u1 o 5 € ((+P )‘S)O. Since § is arbitrary,
there exists uy,y € +P N N. This follows directly from step three of the proof of Theorem 3.4,
and thus u1 o s has a convergent subsequence as § — 0.

Set

Ci= inf J (“Lw) . (8.42)
pe((+P)°)°’NN

Then by Theorem 3.4 there exists u; € +P NN, J (u;) =Cy >0, J' (uy) = 0.
Similarly, for Vg € ((—P)%)° NN,

oo . sup 7 () (8.43)
2,98 h(t)el_ 45 uehr()t) (

is a critical value of J and Jus , € —P N K\ {0}. Take

Cr= inf J (u2,0) (8.44)
9e((=P)°)°’NN

and thus uy € —P NN, J (u3) =C, > 0, J' (u3) =0.

We now claim that if «#; is the unique critical point of J in 4 P, then

(@) ((—i—P)‘S)O N JEN {u1} is not path-connected;

(i) (+P)%)° N JC1 is path-connected.

Otherwise, if ((+P)3)0 nJ<¢ \ {u1} is path-connected, then due to the facts that u} € S and
Sis an open set in S}, we can take vy, vy such that D1, v € S, t() > il t @2) < llv2ll
and there exist r| > 0, and a path r (s) € ((+P)‘S)c> for Vs € [0, 1], with r (0) = vy, r (1) = vy,
sei[%fu lur —r )l >r1, sup J(r(s)) <Ci.

s€[0,1]
Let
3Ty, IE[O, %],
r(r)= r<3<r—%)>, TG[%,%],
371 —t)v2+3<t—%)c'172, TE [%,1],
where 7; = ﬁ ¢ > t(v2) such that J (cvp) < 0. It is evident that 7 (t) € 'y ;55,5

sup J (¥ (1)) < C;. Employing quantitative deformation lemma (see [41]), we can find & > 0,
7€[0,1]
aflow & (f,u):[0,1] x E — E, s.t.

I (¢ u) —ull, < %I,Vu e ((+P)%)°, (8.45)
£ (1,7 (1) € T 1@y, T €10, 11, (8.46)
E(LF@) IO N (+P)) Tt el0,1]. (8.47)

Combining (8.45), (8.46) and (8.47) we derive an expected contradiction
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Ci—e> sup J(§ (1,7 (1)) = Cl s >Cl, (8.48)
t€[0,1]

concluding the proof of (7).
Next, for any vy, vy € ((—i—P)‘S)O N JC€1, we intend to indicate that there exists a path r con-
necting vy and vy, s.t.
r(s) € (+P)°)°, Vs € [0, 11, (8.49)

sup J (r(s)) <C;. (8.50)
s€[0,1]

As a matter of fact, we can define

2(% —s)vl, s € [0, %],
2(s— %)vz, s € [%1]

By second deformation lemma there exists ¢ (¢, u) : [0, 1] x (+P)® = J€1 N (+P)? such that
JCin+P)Yisa strong deformation retract of (+P)°. Take r (s) = ¢ (1,r1(s)). It is easy to

check that  (0) = vy, r (1) = v2, and (8.49), (8.50) follow.
Consider the following exact sequence

ri(s)=

S H (JC1 N (+P)*) . I N ((+P)5)°\{u1})
S Ho (9 0 (PY) N ) 5 Ho (41 0 ((+P))7)
5t (76 0 (P 790 ((PY) )
. (8.51)
where
i I ((+PY) \{ur} — I N ((+P)°)°
and
J I (@P?) > (190 (PY) TN (PY)\ ()

are the inclusions, and 9 is the boundary operator.

Set X =J¢n ((—i—P)‘S)O, Yy=J¢n ((+P)‘S)o \ {u1}. Notice that 3r > 0 small suitably, s.t.
B, (0,r) C Y°. By using the excision property

Co(J,u1) = Hy(X\B, (0,r),Y\B,, (0,r)) = Hy(X,Y)=0. (8.52)

Ho (JCI n ((+P)5)°) =G, (8.53)
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and
rank Ho (Jcl N ((+P)")°\ {ul}) >2, (8.54)
(8.51) yields
Ci(J,un)=Hi (X, Y)#0. (8.55)
Along the same lines, if ©7 is the unique critical point of J in — P\ {0}, then we have
C1(J,u2) #0, (8.56)
and in terms of Lemma 7.8, we conclude the proof. O
8.4. The proof of Theorem 1.1

So far we have got a positive solution #; and a negative solution u; in terms of Lemma 8.8.
To find a sign-changing solution u3, it is necessary for us to use the method based on the work
of [26] and [25]. Let 5 (¢, u) be the negative gradient flow given by (8.12) and consider

O+ ={ueE:n(t,u) e (£P)° for some € (0, +00) };
0=0,N0_,

then O, O4, O_ are the open neighborhoods of 0, 4+ P, — P respectively.
In view of [26], (f4) yields

JONP£3,00N (—P)# 2,30\ (04U O_) # 2. (8.57)

Hence one can find a critical point 43 in 9O\ (O4+ U O_), and of course it is a sign-changing
solution of (1.1).

Without loss of generality, suppose (a, b) is below C,S:l. Assume that (1.1) has only three
nontrivial solutions u1, u> and u3, we will be devoted to showing

JW3) > A(J (u1), J (u2)). (8.58)

Suppose to the contrary. Clearly, inlg Jw) > 0= }(nf\ o J (u) > 0. On account of the
ue ueKy

hypotheses of Theorem 1.1, invoking Theorem 6.2, Cy (J, 00) = 844, G. Therefore, by the fol-
lowing exact sequence

o Hyy 1 (B) S Hyyy (E.J79) 5 Hy (17°) 5 Hy (E) > - (8.59)
we get
Hy (J7°) = Hyq1 (E, V%) =Cyq1(J,00) Z84414,G.q = 1. (8.60)

Set C1 = J (u1), C2 = J (u2). Take & > 0 suitably small, s.t. K; N J* ={0}. As C, (J,0) =
340G, it follows that



C. Li, S. Li/ J. Differential Equations 263 (2017) 7000-7097 7087

Hy (J*) = Hy (J7°) = 84414,G.q > 1. (8.61)

Without loss of generality, C; < C,. We are merely to deal with the case C; < C,. Take four
cases into account:

Case 1: C3 < C1. For above ¢ > 0, s.t., 3¢ < C3+¢ < Cq, according to Lemma 8.8 and Morse
inequalities

2

0="> rankCy (J.u;) = My (C3 +&,Cy +£)

i=1

> By (Cs+ ¢, Co+ &) =rankH, (/42,7 ©7) (8.62)
for g > 2, alluding to
H, (JCW, JC3+6) ~0,q>2. (8.63)
Since H, (J2*¢) = H, (E), we have
Hy (767) 2 Hys (494, 05% ) 20,9 2 1. (8.64)
An argument analogous to [3] and [1] shows that

n(ui) <m(u;) (8.65)

holds for = RY, where n (u;) stands for the number of nodal domains of u;, and then
m@i)>1,i=1,2.
Due to Hy (E JJE ) = 0, by the short exact sequence below

s Hy (E.T75) S Ho (J7) 5 Ho(B) 5 Hy (E.J7%) > - (8.66)
we obtain
Ho(J™°) = Hyo(E)=G. (8.67)

Also observe that
v Hy (J5,T75) S Hy (775) 55 H (J9)

5 Ho (45, 07) 2 Hy (J7°)
o (8.68)

which via (8.67) implies

rankHy (J°) =rankHy (J %) + 1 =2, (8.69)
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Note that m (u3) > n (u3) > 2, so Co (J,u3) = Cy (J,u3) =0. In virtue of H, (JC3_8) =
H, (J*), invoking the exact sequence

i Hy (Jc3+a’Jc3—e) 2 Hy <Jc3_g)
5 Ho (190) B (76 g @) (8.70)
one deduces that
Ho (1C3+8) ~ H, (JC3_5) yex-Yei 8.71)

Evidently, Mo (C3 + ¢, C2> + ¢) = Bo (C3 + €, C2 + ¢) = 0. Employing Morse equality

+o00 +o0
Y (=DM (C3+e.Cate)=) (-1, (C3+¢.Cr+e) (8.72)
q=0 q=0
indicates that
2

2= ZrankCl (J,u;))=M, (C3+¢,Cr+¢)

i=1

— B (Cs +¢,Ca + &) = rank H, (JCW, JC3+€) , (8.73)

yielding rank Hy (J ©37¢) = 3, violating (8.71).
Case 2: C3 = C;. Consider the exact sequence

. ﬁ) H2 (JCZ‘H’;" JCZ—E) _a) Hl (JCZ-S) ﬁ) H] (JC2+8)

i*) Hl (JC2+8’ JCZ_E) _B) HO <JC2—8) ﬁ) HO (JC2+8)

5 H, (JCW, JCH) - (8.74)
and observe that
H <JC2+8, JCH) ~ (JC2+8) ~ H, <JC2+8, JCH) ~0, (8.75)

we derive H (J©27¢) =0 and
HO <JC2—8) ~ H, (JC2+8’ JCQ—S) D HO (JC2+8)
~GoG. (8.76)

Thanks to Hy (J©27¢, J¢) = Co (J,u1) @ Co (J, u3), based on the exact sequence
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D H, (JCZ 8) LS (ch e J8> % Ho (J°)
5 Hy (JCH) 5 H, (JCH, JE) .
we get

Ho (1) = Hy (197, 0%) @ Ho (197°)
~GaGaa,

contradicting (8.69).

7089

(8.77)

(8.78)

Case 3: C; > C3 > Cy. Notice that H; (E) = Hy (E, J3%¢) =0, by the exact sequence

S (B DS Hy (E JCW)

2 H (JCW) % Hy(E) 5 Hy (E JC3+5>

we have
Ho (JC3+8) ~ H, (E JC3+8) @ Hy (E)

=5 (JCW, 7E7%) @ Ho (E)
=EGaG.

Again observe Cy (J, u3) = C1 (J, u3) =0, invoking the exact sequence
ﬁ; H, (]C3+87 JCs—S) 2 Ho (JC3—8)

I Ho <ch+a> ﬁ; Ho (JC3+8’ Jc3—s> .

shows

Ho (7697°) = Ho (16%).
As Hy (J_S) =H (J_S) =0, based on the following exact sequence
oo Hy(70) S Hy (1970) B (5970 )
5 o (77) 5 Ho (797°) B g (4972, 07°)
— H_,; (Jf€)~-~ ,

one deduces

(8.79)

(8.80)

(8.81)

(8.82)

(8.83)
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rank H; (JC3_‘9) — rank H; (JC3_8, J_8> + rank Hy (J_S)

—rank Hy (JC3_5) + rank Hy (JC3_5, J_g)
—0. (8.84)

Thanks to M, (—¢,C3 —¢) = B4 (—¢,C3 —¢) =0 for ¢ > 2, an argument analogous to
Case 1 indicates

rankHy (€97, J7%) =rankHo (197, 17°). (8.85)
Combining (8.84) with (8.85), we obtain
rank Hy (JC3_S) =rank H; (JC3_S) + rankHy (J~°), (8.86)
alluding to
H (103—8) =~G. (8.87)

As Cy (J,up) = Hy (JC2+8, JCZ_S) ~H, (E JC3+8) = (), resorting to the short exact sequence

o> Hy (E JCW) 2 H (JC3+€) S H (E) = - (8.88)
we infer that
H, (JC3+£> ~0. (8.89)

Combining (8.87) with (8.88), the following exact sequence

o Hy (16, ) Sy (167)
ﬁ) H, (JC}H‘S) f) H, (JC3+S’ JC3—£>
o (8.90)

shows
Cr(J,u3) = Hs (JC3+5, JC3_5> £0 (8.91)

in terms of Cy (J,u3) = 0. Since m (u3) > n (u3) > 2, we have C, (J,u3) = 6,2G. However,
according to the hypothesis, Cy (J, 00) = 844, G, dr > 3, so there exists a solution u* of (1.1)
with Cg, (J, u*) # 0. A paradox!

Case 4: C3 = C; > Cy. Note that H, (E, J©7¢) = H, (J&7¢, J%7¢), in view of the exact
sequence
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. _ 9 _
= Hi(E) 3 H (E,JC3 8) % Ho (JC3 8)

X Ho(E) % Hy (E JCH)

o (8.92)

we get

Ho (1‘33*8) = H, (JCW, JC“) ®©G
=Ci(J,u)®C1(J,u3) ®G
~GaG. (8.93)

A standard argument yields
rankHy (/€27 J7*) =rankHo (47, /7). (8.94)
Consider the exact sequence
oo Hy (170) S Hy (16970) B (5970 )
2 Ho (77¢) & Hy (JCH) % Hy (JCH, J_‘9>
N (8.95)
and observe that H; (J ) = H_; (J~¢) =0, hence
rank H (]CZ*S) — rank H; (]Cre, ]*‘?) +1

—rank Hy (JC2_5> + rank Hy (ch_a, J_'S>

~0 (8.96)

via (8.67). Inserting (8.94) into (8.96), we have
rank Ho (JCH) — rank H, (JC2_8> 1 (8.97)
and consequently, we deduce from (8.93) that
H, (JCH) ~G. (8.98)

On the other side,
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H, (JCH) ~ H, (E JCH)

>~ H2 (JC2+8’ JCZ*S)
=C(J,u) ®Car(J,u3). (8.99)

The combination of (8.98) and (8.99) also alludes to C, (J, u3) = §,2G, giving rise to a desired
contradiction. That’s the precise statement (8.58).

We now remain to prove C; (J, u3) # 0. Indeed, notice that inléf J () =>0,s0C,(J,00) =
ueKy

H, (E, J_‘S) = 844, G for Ve > 0. Take & > 0 small suitably such that J* N K ; = {0}.
Notice that C; = J (u1) < Co = J (up) < C3=J (u3). Take €1, &0 > 0,s.t.,, C;1 + 61 < Cy <
Cy 4 &3 < C3. Thanks to di > 3, the combination of (8.60) and (8.61) shows H; (J) =0.
Since Cy4 (J,u1) = H, (JC1 +e1, JF) = 8,1G, by the following exactness of singular homol-
ogy groups

oo H (I9) S (JCF) Doy (16 )

S o (5) 5 Ho (76049) B g (5601, )

— (8.100)
we derive
rank H; (JC1+81) — rank H; (JCH'EI, Js)
+rankHy (J¢) — rank Ho (JCIHI)
=0 (8.101)
and this gets
rank H (JC'J“S‘) =rank H, (JC1+8'> + 1. (8.102)
Argue by contradiction, C» (J, u3) =0, yielding
Hy (E, 7€) =0, (8.103)

As m (u3) > n (u3) > 2, it follows that H (E, J€2%¢2) = Hy (E, J©>7#2) = 0. Observe that
Cy (J,uz) = Hy (JO2Fe2, JO1+e1) = 51 G. Due to the following exact sequence:

o> Hy (JC2+82’ JC1+81> _3) H, <JC1+51>
E) Hl (JC2+62> i“) Hl (‘,C2+62’ JC1+81)

_8) Hy (JC1+€1> ﬁ) Hy (]C2+82> ﬁ) Hy (]C2+€2’ JC1+81)

, (8.104)
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we have
rank H; (JCH'E') — rank H (JC2+82) +1

—rankHy (JC‘ “‘) + rank Hy (JC2+52)
—0. (8.105)

Inserting (8.102) into (8.105),
rank H (JC2+52> =rank Hy (JC2+82> >1, (8.106)
violating
H, (JCWZ) ~ H, (E JCWZ) = Cy (], u3) 0. (8.107)
Hence, C> (J, u3) is nontrivial, and by Proposition 7.3 C2 (J, u3) = 842G since m (u3) > 2. Em-
ploying Morse inequality, there exists a nontrivial solution u™* of (1.1) with Cy, (J, u*) # 0. Out
of the question!
Quite similarly we can treat the case C1 = C>. We complete the proof of Theorem 1.1 thereby.

9. Appendix

Lemma 9.1. Under the hypotheses of Lemma 2.11, then ¢ = & for k < d; + 1, where the defini-
tions of ¢ and & are presented by (2.28) and (2.29) respectively.

Proof. Clearly & < {x, so we concentrate on the converse. As C3° (R”) is dense in H' (RV),

forweE,ﬂ-_1 NH! (RN),EIun ECSO(RN),MH—) win H! (RN).
We claim that

Ppy g —win H' (IR{N> ©.1)

for k <dj + 1, where Py. s the orthogonal projection onto E &, in L2 (RV).
To see this, we first show that PEkL 1un is bounded in H'! (RN ) In practice, by (3.1)
2 2
| Py | <2 Pry “m
2
<2 +m) | Pg_unl;2
<200+ m) uall2 <200 +m) luall®, 9.2)

and therefore

< lutall + | P yun | = (1412 G+ m)1?)

H Pt tn lunll . 9.3)

Observe that
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” L ”L2 = ” P (un — w)”L2

< llup —wliz2 < llup —wl—0 94
derives
| Pec_yun | = 0. 9.5)
consequently,
[ ] 12
< | Peccion + Pep | = w)| = 1a = w 9.6)
yields
H Pyi ttn - wH < | Peyyttn | + it — wl = 0 ©9.7)

via (9.5). The claim is thus proved. Thanks to Pg,_,u, € H? (RN), PEkL Hn € H? (RN).
The above argument indicates that for Yw € E,ﬂ;l NH! (RN), Jw, € E,ﬂ;l NH?2 (RN), wy, —>

w in H! (RN ) Hence, there exists a minimizing sequence {%}:-;x; of (2.29), ¢, € E kL— (NH 2,
lonll;2=1,s.t., €, >0,e&, — 0, and

b < / Voul® +V ()92 < & +én, ©8)
]RN
deriving {x < &. We arrive at the conclusion. O
A more general case can be stated as follows:

Corollary 9.2. Let V be a real K-R potential, then for V8,1 C H 2 dimBy_ =k — 1,

inf /|V1ﬁ|2+V(x) Y2= inf (AY,Y);2. 9.9)
yeBl nml we%k{lmﬂ
Iyl 2=1 RY Iyl 2=1

Proof. Note that there exist Cy, Cp > 0, s.t., for Vu € By _1,
Crllullz2 = llully = C2 llullg2, (9.10)
an argument analogous to Lemma 9.1 ends the proof. O

Lemma 9.3. Let V be a K-R potential and suppose {uk},j';xf C H', then uxy — ug in H,}, =
oyl
up —ugin H'.
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Proof. We just deal with the case “=" in consideration of similarity argument on the converse.
By way of negation, Jp* € H!, Jy >0,

(ke — o, ¢*)| = v ©.11)

As {uk}kf‘f is bounded in H!, there exists a subsequence {ukj };;1, S.toug; — u*in H! as
Jj — 400, ie.

(ur, —u*, @)= 0,Yp € H'. (9.12)

We claim that u* = ug a.e. on R". Notice that for fixed ¢ € C§° (RV), there is a bounded
domain @ CRY, {x e RY : ¢ (x) # 0} C Q. Hence,

/ V (x) (ukj —u)p

RN
= ”VIHLP ! ||Mkj - u*”LZq(Q) : ”(p“LZ‘I(Q)
HIVallpoe - uk, = ™| g - 101120

— 0, (9.13)

%+$=l,p> Lif N>4,and p=2if N <3.
(9.12) together with (9.13) yields

[ 9 Gty = Vo o a, —)

RN
= [ ¥, =) Vot (g, — )
RN
[V u =)ot n =) [ (- u)g
RN RN
— 0, (9.14)

indicating

(1 —u*,<p>m—>0 (9.15)
for Vo € C§° (RN ) On the other side, in view of the hypothesis, we have

(ur; —uo,9), —0 (9.16)

for Vo € C3° (RV).
Using (9.15) and (9.16) shows
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(u* —uo, ), =0,¥g € C° (RN) . 9.17)
As C° (RN) is dense in H'! (RN), (9.17) derives

("~ uo, ¢}, =0.vg e ' (RY). (9.18)

Take ¢ = u™ — ug and the claim is thus proved. This derives a desired contradiction by combining
(9.11) and (9.12). The proof is complete. O

The following proposition is a C* version of Theorem 5.6 of [8] and also a variant version of
Theorem 8.8 of [29]. The proof is almost the same as that of Theorem 5.6 of [8].

Proposition 9.4. Let E be a Hilbert space. Suppose that { fr e C*9(E,R)| o €0, 1]} isa
family of functions satisfying the (PS) condition. Suppose that there exists an open set N such
that fy has a unique critical point ps in N, Yo € [0, 1], and that 0 — f, is continuous in
C! (ﬁ) topology. Then C, (fs, po) is independent of o.
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