科研进展
(邱彦奇)随机点过程的一些动力系统性质
发布时间:2019-01-14 |来源:

  行列式点过程是目前比较活跃的研究领域。Ghosh-Peres点刚性性质以及Insertion-Deletion tolerance性质是点过程理论中重要的研究课题。邱彦奇与合作者在行列式点过程领域取得如下进展:证明了任意维复空间内有界区域上加权Bergman空间诱导的行列式点过程具有Insertion-Deletion tolerence性质;证明了一维整数格点上Toeplitz矩阵诱导的平稳行列式点过程一些新的动力系统性质;证明了直线上几类重要Pfaffian点过程的点刚性性质。此外还证明了行列式点过程与Poisson点过程之间叠加时具有某种刚性。 

 

 

 

   发表论文 

  1. Bufetov, Alexander I.; Fan, Shilei; Qiu, Yanqi, Equivalence of Palm measures for determinantal point processes governed by Bergman kernels. Probab. Theory Related Fields 172(2018),no. 1-2, 31-69. 

  2. Fan Ai-Hua; Fan, Shilei; Qiu, YanqiSome properties of stationary determinantal point processes on Z, accepted for publication in J. London Math. Soc. 

  3. Bufetov, Alexander I.;Nikitin, Pavel; Qiu, Yanqi, On number rigidity for Pfaffian point processes, conditionally accepted for publication in Moscow Math. J. 

  4. QiuYanqiA rigidity property of superpositions involving  determinantal processes, accepted for publication in  Stoch. Process. Appl. 


附件下载:

    联系我们
    参考
    相关文章