对经典不可压缩Navier-Stokes 方程:关于该问题的整体正则性是Clay研究所公布的七大千禧年问题之一。我们[7]证明了只要初始速度的一个方向导数在临界函数空间中充分小时,该问题存在唯一整体解,根据此条件, 我们构造了多类使得该方程存在整体解的大初值;更进一步我们[3]将此结果推广到了三维各向异性的Navier-Stokes方程;在[8]中证明了对于任意初值, 只要该方程的一个粘性系数充分大时,三维Navier-Stokes方程存在唯一的整体解。
P.L. Lions《流体力学中的数学理论》Mathematical Topics in Fluid Mechanics, Vol 1, 1996, 第33页提出如下公开问题:非均匀粘性不可流体密度块边界的正则性是否可以不随时间而变化? 在假设粘性系数为正常数且在二维情形,我们证明了任意两块非零常数密度块的界面的正则性不随时间而变化(ARMA 2016;CPAM 2019); 当粘性系数在常数附近且在二维情形,我们[2]证明了任意两块非零常数密度块的界面的正则性不随时间而变化; 如不满足此条件, Fefferman等人构造了反例。在三维情形,在更一般的框架下,我们[1]研究非均匀不可压缩Navier-Stokes方程的适定性,特别的,我们可用此框架研究三维密度块边界正则性的传播。
(1). Ping Zhang. Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system. Adv. Math. 363. 2020.
(2). Marius Paicu,Ping Zhang. Striated Regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity. Commun. Math. Phys. 376: 385-439. 2020.
(3). Yanlin Liu,Marius Paicu,Ping Zhang. Global well-posedness of 3-D anisotropic Navier-Stokes system with small unidirectional derivative. Arch. Ration. Mech. Anal. 238: 805-843. 2020.
(4). Reinhard Farwig,Chenyin Qian,Ping Zhang. Incompressible Inhomogeneous Fluids in Bounded Domains of R3 with Bounded Density. J. Funct. Anal. 278(5). 2020.
(5). Marius Paicu,Ping Zhang,Zhifei Zhang. On the hydrostatic approximation of the Navier-Stokes equations in a thin strip. Adv. Math. 372. 2020.
(6). Jiajiang Liao,Frank Sueur,Ping Zhang. Zero-viscosity limit of the incompressible Navier-Stokes equations with sharp vorticity gradient. J. Differ. Equ. 268(10): 5855-5891. 2020.
(7). Yanlin Liu,Ping Zhang. Global solutions of 3-D Navier-Stokes system with small unidirectional derivative. Arch. Ration. Mech. Anal. 235: 1405-1444. 2020.
(8). Yanlin Liu,Ping Zhang. Global well-posedness of 3-D anisotropic Navier-Stokes system with large vertical viscous coefficient. J. Funct. Anal. 279(10). 2020.附件下载: