科研进展
折扣型哈密顿-雅克比方程的粘性解负向极限(张建路)
发布时间:2023-01-10 |来源:

  Suppose M is a closed Riemannian manifold. For a \(C^2\) generic (in the sense of Ma?é) Tonelli Hamiltonian \(H: T^*M\rightarrow \mathbb {R}\), the minimal viscosity solution \(u_\lambda ^-:M\rightarrow \mathbb {R}\) of the negative discounted equation $$\begin{aligned} -\lambda u+H(x,d_xu)=c(H),\quad x\in M,\ \lambda >0 \end{aligned}$$ with the Ma?é’s critical value c(H) converges to a uniquely established viscosity solution \(u_0^-\) of the critical Hamilton–Jacobi equation $$\begin{aligned} H(x,d_x u)=c(H),\quad x\in M \end{aligned}$$ as \(\lambda \rightarrow 0_+\). We also propose a dynamical interpretation of \(u_0^-\). 

 

  Publication: 

  Journal of Dynamics and Differential Equations (2022) 

  https://doi.org/10.1007/s10884-022-10227-1 

    

  Author: 

  Ya-Nan Wang 

  School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210097, China 

    

  Jun Yan 

  School of Mathematical Sciences, Fudan University and Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai, 200433, China 

    

  Jianlu Zhang 

  Hua Loo-Keng Key Laboratory of Mathematics & Mathematics Institute, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China 

  Email: jzhang87@amss.ac.cn 


附件下载:

    联系我们
    参考
    相关文章