[1] 中国科学院数学与系统科学研究院计算数学与科学工程计算研究所编;曹礼群 唐贻发 审校.冯康文集(第一卷).科学出版社,2020
[2] 中国科学院数学与系统科学研究院计算数学与科学工程计算研究所编;曹礼群 唐贻发 审校.冯康文集(第二卷).科学出版社,2020
[3] 冯康,秦孟兆著.哈密尔顿系统的辛几何算法.浙江科学技术出版社,2003
[4] Kang Feng; Mengzhao Qin.Symplectic Geometric Algorithms for Hamiltonian Systems.Zhejiang Publishing United Group; Springer,2010
[5] Kang Feng; Zhong-Ci Shi.Computation of Differential Equations and Dynamical Systems.World Scientific,1993
[6] 冯康, 石钟慈著.弹性结构的数学理论.科学出版社,1981
[7] K. Feng and D. L. Wang, Variations on a theme by euler, J. Comput. Math. 16 (1998), no. 2, 97-106.
[8] K. Feng, Contact algorithms for contact dynamical systems, J. Comput. Math. 16 (1998), no. 1, 1-14.
[9] K. Feng, The step-transition operators for multi-step methods of ode's, J. Comput. Math. 16 (1998), no. 3, 193-202.
[10] K. Feng, The calculus of generating functions and the formal energy for hamiltonian algorithms, J. Comput. Math. 16 (1998), no. 6, 481-498.
[11] K. Feng and Z. J. Shang, Volume-preserving algorithms for source-free dynamical-systems, Numer. Math. 71 (1995), no. 4, 451-463.
[12] F. Kang and Q. Mengzhao, Hamiltonian algorithms for hamiltonian-systems and a comparative numerical study, Computer Physics Communications 65 (1991), no. 1-3, 173-187.
[13] K. Feng, H. M. Wu and M. Z. Qin, Symplectic difference-schemes for linear hamiltonian canonical systems, J. Comput. Math. 8 (1990), no. 4, 371-380.
[14] F. Kang, H. M. Wu, M. Z. Qin and D. L. Wang, Construction of canonical difference-schemes for hamiltonian-formalism via generating-functions, J. Comput. Math. 7 (1989), no. 1, 71-96.
[15] K. Feng and Z. C. Shi, Proceedings of the china united-states seminar on boundary integral and boundary methods in physics and engineering - foreword, J. Comput. Math. 7 (1989), no. 2, 97-97.
[16] K. Feng and M. Z. Qin, The symplectic methods for the computation of hamiltonian equations, Lecture Notes in Mathematics 1297 (1987), 1-37.
[17] K. Feng, Difference-schemes for hamiltonian-formalism and symplectic-geometry, J. Comput. Math. 4 (1986), no. 3, 279-289.
[18] 冯康,王烈衡.非协调元的分数阶Sobolev空间[J].计算数学,1995(03):305-310.
[19] 冯康,王烈衡.非协调元的一个Sobolev嵌入定理[J].计算数学,1995(01):110-113.
[20] 冯康,余德浩.关于调和方程自然积分算子的一个定理[J].计算数学,1994(02):221-226.
[21] 冯康,秦孟兆.Hamilton动力体系的Hamilton算法[J].自然科学进展,1991(02):102-112.
[22] 冯康,曾继荣,邵毓华,樊天蔚.中子迁移方程的守恒差分方法与特征值问题[J].数值计算与计算机应用,1980(01):26-33.
[23] 冯康.论微分与积分方程以及有限与无限元[J].计算数学,1980(01):100-105.
[24] 冯康.论间断有限元的理论[J].计算数学,1979(04):378-385.
[25] 冯康.组合流形上的椭圆方程与组合弹性结构[J].计算数学,1979(03):199-208.
[26] 冯康.广义Mellin变换Ⅰ[J].数学学报,1957(02):242-267.
[27] 冯康.广义函数的泛函对偶关系[J].数学进展,1957(02):201-208.
[28] 冯康.广义函数论[J].数学进展,1955(03):405-590.