[1] 陆启铿著. 典型流形与典型域. 北京:科学出版社,2011.
[2] 陆启铿主编; 殷蔚萍 执行主编. 多复变在中国的研究与发展. 北京:科学出版社,2009.
[3] Jacques Faraut; Soji Kaneyuki; Adam Korányi; Qi-Keng Lu; Guy Roos. Analysis and Geometry on Complex Homogeneous Domains. Boston:Birkh?user,2000.
[4] 陆启铿著. 典型流形与典型域:新篇. 上海:上海科学技术出版社,1997.
[5] Qi-Keng Lu; Stephen S.-T.Yau, and Anatoly Libgober. Singularities and Complex Geometry.Providence, R.I.:American Mathematical Society; International Press,1997.
[6] Gong Sheng; Lu Qi-Keng; Wang Yuan; Yang Lo .International Symposium in Memory of Hua Loo Keng v.II Analysis. Beijing : Science Press ; New York : Springer-Verlag, 1991.
[7] Gong Sheng; Lu Qi-Keng; Wang Yuan; Yang Lo. International Symposium in Memory of Hua Loo Keng v.I Number Theory. Beijing : Science Press ; New York : Springer-Verlag,1991.
[8] 陆启铿著. 微分几何学及其在物理学中的应用. 北京:科学出版社,1982.
[9] 陆启铿编著. 多复变数函数引论. 北京:科学出版社,1961.
[10] [苏联]R.尼凡林那著. 单值化. 北京:科学出版社,1960.
[11] Q. K. Lu, On the lower bounds of the curvatures in a bounded domain, Sci. China-Math. 58 (2015), no. 1, 1-10.
[12] Q. K. Lu, An inequality of the holomorphic invariant forms, Sci. China-Math. 56 (2013), no. 10, 1965-1968.
[13] Q. K. Lu, On the curvature conjecture of hua loo-keng, Acta Mathematica Sinica-English Series 28 (2012), no. 2, 295-298.
[14] Q. K. Lu, Poisson kernel and cauchy formula of a non-symmetric transitive domain, Sci. China-Math. 53 (2010), no. 7, 1679-1684.
[15] Q. K. Lu, The conjugate points of cp infinity and the zeroes of bergman kernel, Acta Math. Sci. 29 (2009), no. 3, 480-492.
[16] Q. K. Lu, Holomorphic invariant forms of a bounded domain, Sci. China Ser. A-Math. 51 (2008), no. 11, 1945-1964.
[17] Q. K. Lu and K. Wu, A representation of the lorentz spin group and its application, Acta Mathematica Sinica-English Series 23 (2007), no. 4, 577-598.
[18] Q. K. Lu, Hua operator on vector bundle: Application to ads/cft correspondence of dirac fields, Sci. China Ser. A-Math. 48 (2005), no. 3, 413-431.
[19] Q. K. Lu, On the quaternion ball and the quaternion projective space, Acta Mathematica Sinica-English Series 21 (2005), no. 3, 449-456.
[20] Q. K. Lu, Heisenberg group and energy-momentum conservative law in de-sitter spaces, Communications in Theoretical Physics 44 (2005), no. 3, 389-392.
[21] Q. K. Lu, A global solution of the einstein-yang-mills equation on the conformal space, Sci. China Ser. A-Math. 45 (2002), no. 3, 342-355.
[22] Q. K. Lu, S. K. Wang and K. Wu, Global solutions of einstein-dirac equation on the conformal space, Communications in Theoretical Physics 36 (2001), no. 2, 129-130.
[23] Q. K. Lu, Z. Cheng and H. Y. Guo, Global geometric properties of ads space and the ads/cft correspondence, Science in China Series a-Mathematics Physics Astronomy 44 (2001), no. 6, 690-695.
[24] Q. K. Lu, A global solution of the einstein-yang-mills equation on the conformal space, Chinese Science Bulletin 46 (2001), no. 6, 460-461.
[25] Q. K. Lu, On ads/cft correspondence of eym fields, Sci. China Ser. A-Math. 44 (2001), no. 4, 445-451.
[26] Q. K. Lu, The eigen functions of the complex projective space, Acta Mathematica Sinica-New Series 14 (1998), no. 1, 1-8.
[27] Q. K. Lu, The yang-mills fields on the minkowski space, Science in China Series a-Mathematics Physics Astronomy 41 (1998), no. 10, 1061-1067.
[28] Q. K. Lu, The unitary connections on the complex grassmann manifold, Science in China Series a-Mathematics Physics Astronomy 41 (1998), no. 12, 1248-1254.
[29] Q. K. Lu, Real horo-hypercircle coordinate, Chinese Science Bulletin 41 (1996), no. 7, 542-544.
[30] Q. K. Lu, A study of maxwell equation by spinor analysis, 1993.
[31] Q. K. Lu, The poisson formula for harmonic (1, 0)-forms in a ball of cn, Acta Math. Sci. 11 (1991), no. 3, 267-273.
[32] Q. K. Lu, The heat kernel of a ball in cn, Chinese Annals of Mathematics Series B 11 (1990), no. 1, 1-14.
[33] Q. K. Lu, Green form to intrinsic metric of a ball, Science in China Series a-Mathematics Physics Astronomy 32 (1989), no. 2, 129-141.
[34] Q. K. Lu, A note on the extremum of sectional curvature of a kahler manifold, Scientia Sinica Series a-Mathematical Physical Astronomical & Technical Sciences 27 (1984), no. 4, 367-371.
[35] 陆启铿.一段难忘的记忆 纪念郭汉英同志.科学文化评论,2012,9(04):114-117.
[36] 陆启铿, 爱因斯坦狄拉克方程的整体解. 北京市,中国科学院数学与系统科学研究院,2004-01-01.
[37] 陆启铿, 爱因斯坦–杨振宁–米尔斯方程的大范围解. 北京市,中国科学院数学与系统科学研究院,2001-12-01.
[38] 陆启铿.多复变函数论的回顾与前瞻.首都师范大学学报(自然科学版),1996(04):1-7.
[39] 洪毅,陆启铿.复射影空间中子流形的诱导度量.华南理工大学学报(自然科学版),1988(04):29-38.
[40] 陆启铿.超球不变度量的Green式.中国科学(A辑 数学 物理学 天文学 技术科学),1988(11):1129-1140.
[41] 陆启铿.Khler流形上的格林式与柯西公式.数学季刊,1987(03):11+1-10.
[42] 陆启铿.Kǎhler流形曲率张量的分类.数学季刊,1986(01):15-32.
[43] 陆启铿.关于Khler流形截面曲率的最大和最小值的注记.中国科学(A辑 数学 物理学 天文学 技术科学),1983(11):1003-1006.
[44] 钟家庆,陆启铿.仿射齐性锥的实现.数学学报,1981(01):116-142.
[45] 陆启铿,陈东岳.利用电子计算机进行公式处理.计算机学报,1980(03):193-201.
[46] 吴詠时,陆启铿.主丛上右移不变的度规和变分原理——兼论丛空间作为时空和内部空间的统一.高能物理与核物理,1980(03):322-336.
[47] 陆启铿,殷慰萍.一个变系数的波动方程的Cauchy问题之解.数学年刊A辑(中文版),1980(01):115-129.
[48] 陈志华,郑绍远,陆启铿.完备Khler流形上的Schwarz引理.中国科学,1979(09):849-856.
[49] 陆启铿.有界域解析映照的固有微分的估值.科学通报,1978(03):146-149+162.
[50] 陆启铿,陈建生,邹振隆.食变星偏食光变曲线解.中国科学,1978(01):71-83.
[51] 陆启铿.Q 函数的极小值.数学学报,1977(01):41-48.
[52] 陆启铿,邹振隆,郭汉英.典型时空中的运动效应和宇观红移现象.物理学报,1974(04):225-238.
[53] 陆启铿.规范场与主纤维丛上的联络.物理学报,1974(04):249-263.
[54] 陆启铿,刘煜奋,邹振隆,郭汉英.标量-张量引力波.物理学报,1974(02):95-112.
[55] 陆启铿,刘煜奋,邹振隆,郭汉英.标量-张量的Ⅲ型引力波.物理,1972(01):45-47.
[56] 陆启铿.关于Cauchy-Fantappiè公式.数学学报,1966(03):344-363.
[57] 陆启铿.关于常曲率的Khler流形.数学学报,1966(02):269-281.
[58] 陆启铿.一个二次矩阵方程之解及其几何意义.厦门大学学报(自然科学版),1963,10(02):89-134.
[59] 陆启铿.关于解析映照正规族的一个定理.厦门大学学报(自然科学版),1963,10(01):1-16.
[60] 华罗庚,陆启铿.典型域的调和函数论(Ⅱ)——对称方阵双曲空间的调和函数.数学学报,1959(03):295-305.
[61] 华罗庚,陆启铿.典型域的调和函数论(Ⅲ)——斜对称方阵双曲空间的调和函数.数学学报,1959(03):306-314.
[62] 华罗庚,陆启铿.典型域上的调和函数论(Ⅰ)——矩阵双曲空间的调和函数.数学学报,1958(04):531-547.
[63] 陆启铿.一个解析不变量及其示性作用.数学学报,1958(02):243-252.
[64] 陆启铿.多复变数函数的Schwarz引理.数学学报,1957(03):370-420.
[65] 陆启铿,钟同德.Привалов定理的拓广.数学学报,1957(01):144-165.
[66] 陆启铿.多复变数函数与酉几何.数学进展,1956(04):567-662.