科研进展
凯勒度量流的切流(简旺键)
发布时间:2024-02-04 |来源:

  We improve the description of $\mathbb{F}$-limits of noncollapsed Ricci flows in the K?hler setting. In particular, the singular strata $\mathcal{S}^k$ of such metric flows satisfy $\mathcal{S}^{2j}=\mathcal{S}^{2j+1}$. We also prove an analogous result for quantitative strata, and show that any tangent flow admits a nontrivial one-parameter action by isometries, which is locally free on the cone link in the static case. The main results are established using parabolic regularizations of conjugate heat kernel potential functions based at almost-selfsimilar points, which may be of independent interest.  

      

  Publication:  

  Journal f r die reine und angewandte Mathematik (Crelles Journal)  

  https://doi.org/10.1515/crelle-2023-0071  

      

  Author:  

  Max Hallgren  

  Department of Mathematics, Rutgers University, New Brunswick, NJ 08904, USA  

    

  Wangjian Jian  

  Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China  

  Email: wangjian@amss.ac.cn  


附件下载:

    联系我们
    参考
    相关文章