科研进展与学术交流报告会
中科院数学与系统科学研究院

科研进展与学术交流报告会

(第8期)


报告人一:苏庆堂 助理研究员(数学研究所)    

题 目 一:二维水波方程的长时间行为    

摘 要 一:主要讨论二维水波方程长时间行为的一些研究,包括有旋水波的长时间行为以及水波不稳定性的一些结果。也会简单讨论一些领域内受关注的公开问题。    

报告人二:许现民 副研究员计算科学与科学工程计算研究所)    

题 目 二:Recent progress on analysis and computation for two-phase flows with moving contact line    

摘 要 二: It is a challenging problem to model and simulate two-phase flows with moving contact line. The standard no-slip boundary condition will lead to infinite energy dissipations. This is referred to as the moving contact line paradox. Although many continuum models have been developed to resolve the paradox, there still exist many controversies. Mathematically, the moving contact line problem is described by a two-phase Navier-Stokes system coupled with some nonlinear dynamic boundary conditions. Both analysis and simulation for the system are very challenging. In this talk, I will present recent progress on modelling, analysis and numerical simulations to the problem, especially for the case that the solid substrate is rough or inhomogeneous. I will also address the main difficulties we have encountered in this field.    

  间:2022.10.14(星期五), 10:40-13:00    

  点:数学院南楼N204 / 腾讯会议334-610-571    

报告会视频    

[video:2022-10-14科研进展和学术交流报告会 00_30_31-01_56_55]

注:本视频未经允许不得转载,违者将依法追究侵权法律责任。


附件下载: